Advertisement

Earth, Moon, and Planets

, Volume 97, Issue 1–2, pp 79–90 | Cite as

Seas under ice: Stability of liquid-water oceans within icy worlds

  • Javier Ruiz
  • Alberto G. Fairén
Article
  • 72 Downloads

Abstract

The present-day existence of internal oceans under the outer ice shell of several icy satellites of the Solar System has been recently proposed. The presence of antifreeze substances decreasing ice’s melting point (and tidal heating in Europa’s case) has been generally believed to allow the stability of such oceans; limited cooling of the water (ice plus liquid) layer, due to stability against convection or to stagnant lid convection in the icy shell, have been also considered. Here we propose that even pure liquid-water oceans could survive today within several icy worlds, and we consider some factors affecting thermal modeling in these bodies. So, the existence of such oceans would be a natural consequence of the physical properties of water ice, independently from the addition of antifreeze substances or any other special conditions. The inclusion of these substances would contribute to expand the conditions for water to stay liquid and to increase ocean’s volume.

Keywords

icy bodies internal oceans solid-state convection water ice thermal conductivity water ice viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank thorough revision by an anonymous referee, which greatly contributed to put into shape this work. We also thank Heather Hava for assistance with manuscript. JR work was supported from a grant of the Spanish Secretaría de Estado de Educación y Universidades.

References

  1. Cassen P.M., Peale S.J. and Reynolds R.T. (1982) Structure and thermal evolution of the Galilean satellites. In: Morrison D. (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp. 93–128Google Scholar
  2. Consolmagno G.J. and Lewis J.S. (1978) The evolution of icy satellite interiors and surfaces. Icarus 34: 280–293CrossRefADSGoogle Scholar
  3. Cruikshank D.P., Roush T.L., Moore J.M., Moore, Sykes M.V., Owen T.B., Bartholomew M.J., Brown R.H. and Tryka K.A. (1997) The surfaces of Pluto and Charon. In: Stern S.A., Tholen D.J. (eds) Pluto and Charon. University of Arizona Press, Tucson, pp. 221–267Google Scholar
  4. Davies M.E. et al. (1998) The control networks of the Galilean satellites and implications for global shape. Icarus 135: 372–376CrossRefADSGoogle Scholar
  5. Durham W.B. and Stern L.A. (2001). Rheological properties of water ice-Applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci. 29: 295–330CrossRefADSGoogle Scholar
  6. Ellsworth K. and Schubert G. (1983). Saturn’s icy satellites: thermal and structural models. Icarus 54: 490–510CrossRefADSGoogle Scholar
  7. Freeman J., Moresi L. and May D.A. (2004). Evolution into the stagnant lid convection regime with a non-Newtonian water ice rheology. Geophys. Res. Lett. 31: L11701, 10.1029/2004GL019798CrossRefADSGoogle Scholar
  8. Goldsby D.L. and Kohlstedt D.L. (2001). Superplastic deformation of ice: Experimental observations. J. Geophys. Res. 106: 11,017–11,030CrossRefADSGoogle Scholar
  9. Grasset O. and Sotin C. (1996). The cooling rate of a liquid shell in Titan’s interior. Icarus 123: 101–112CrossRefADSGoogle Scholar
  10. Grasset O., Sotin C. and Deschamps F. (2000). On the internal structure and dynamics of Titan. Planet. Space Sci. 48: 617–636CrossRefADSGoogle Scholar
  11. Hogenboom D.L., Kargel J.S., Consolmagno G.J., Holden T.C., Lee L. and Buyyounouski M. (1997). The ammonia-water system and the chemical differentiation of icy satellites. Icarus 126: 171–180CrossRefADSGoogle Scholar
  12. Kargel J.S. and Pozio S. (1989). The volcanic and tectonic history of Enceladus. Icarus 119: 385–404CrossRefADSGoogle Scholar
  13. Kargel J.S., Kaye J.Z., Head J.W., Marion G.M., Sassen R., Crowley J.K., Ballesteros O.P., Grant S.A. and Hogenboom D.L. (2000). Europa’s crust and ocean: origin, composition, and the prospects for life. Icarus 148: 226–265CrossRefADSGoogle Scholar
  14. Khurana K.K., Kivelson M.G., Stevenson D.J., Schubert G., Russell C.T., Walker R.J. and Polanskey C. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395: 777–780CrossRefPubMedADSGoogle Scholar
  15. Kivelson M.G., Khurana K.K., Russell C.T., Volwerk M., Walker R.J. and Zimmer C. (2000). Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa Science 289: 1340–1343CrossRefPubMedADSGoogle Scholar
  16. Kivelson M.G., Khurana K.K. and Volwerk M. (2002). The permanet and inductive moment of Ganymede. Icarus 157: 507–522CrossRefADSGoogle Scholar
  17. Klinger J. (1980). Influence of a phase transition of the ice on the heat and mass balance of comets. Science 209: 271–272CrossRefADSGoogle Scholar
  18. Lewis J.S. (1971). Satellites of the outer planets: thermal models. Science 172: 1127–1128CrossRefADSGoogle Scholar
  19. Lorenz R.D. and Shandera S.E. (2001). Physical properties of ammonia-rich ice: application to Titan. Geophys. Res. Lett. 28: 215–218CrossRefADSGoogle Scholar
  20. Matson D.L. and Brown R.H. (1989). Solid-state greenhouses and their implications for icy satellites. Icarus 77: 67–81CrossRefADSGoogle Scholar
  21. McCord T.B. et al. (1998). Salts on Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 280: 1242–1245CrossRefPubMedADSGoogle Scholar
  22. McCord T.B., Hansen G.B. and Hibbitts C.A. (2001). Hydrated salt minerals on Ganymede surface: Evidence of an ocean below. Science 292: 1523–1525CrossRefPubMedADSGoogle Scholar
  23. McKinnon, W. B.: 1998, Geodynamics of icy satellites, in B. Schmitt, C. De Bergh, M. and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, pp. 525–550Google Scholar
  24. McKinnon W.B. (1999). Convective instability in Europa’s floating ice shell. Geophys. Res. Lett. 26: 951–954CrossRefADSGoogle Scholar
  25. McKinnon, W. B.: 2001, DPS Meeting, abstract 35.01Google Scholar
  26. McKinnon W.B., Lunine J.I. and Banfield D. (1995). Origin and evolution of Triton. In: Cruikshank D.P. (eds), Neptune and Triton. University of Arizona Press, Tucson, pp. 807–877Google Scholar
  27. McKinnon W.B., Simonelli D.P. and Schubert G. (1997). Composition, internal structure, and thermal evolution of Pluto and Charon. In: Stern S.A. and Tholen D.J. (eds) Pluto and Charon. University of Arizona Press, Tucson, pp. 295–343Google Scholar
  28. Morrison D., Owen T. and Soderblom L.A. (1986). The satellites of Saturn. In: Burns J. and Matthews M.S. (eds) Satellites. University of Arizona Press, Tucson, pp. 764–801Google Scholar
  29. Ojakangas G.W. and Stevenson D.J. (1989). Thermal state of an ice shell on Europa. Icarus 81: 220–241CrossRefADSGoogle Scholar
  30. Pappalardo R.T. et al. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. 104: 24.015–24.055CrossRefADSGoogle Scholar
  31. Prieto, O. and Kargel, J. S.: 2002, Lunar Planet. Sci. XXXIII, abstract 1726 [CD-ROM]Google Scholar
  32. Rainey, E. S. and Stevenson, D. J.: 2003, AGU Fall Meeting, abstract P51B-0447Google Scholar
  33. Ross R.G., Kargel J.S. (1998) Thermal conductivity of ices with special reference to Martian polar caps. In: Schmitt B., De Bergh C., Festou M. (eds) Solar System Ices. Kluwer Academic Publishers, Dordrecht, pp. 33–62Google Scholar
  34. Ross M.N., Schubert G. (1987) Tidal heating in an internal ocean model of Europa. Nature 325: 133–134CrossRefADSGoogle Scholar
  35. Ross M.N., Schubert G. (1989) Viscoelastic models of tidal heating in Enceladus. Icarus 78: 90–101CrossRefADSGoogle Scholar
  36. Reynolds R.T., Cassen P.M. (1979) On the internal structure of the major satellites of the outer planets. Geophys. Res. Lett. 6: 121–124ADSGoogle Scholar
  37. Ruiz J. (2001) The stability against freezing of an internal liquid-water ocean in Callisto. Nature 412: 409–411CrossRefPubMedADSGoogle Scholar
  38. Ruiz J. (2003) Heat flow and depth to a possible internal ocean on Triton. Icarus 166: 436–439CrossRefADSGoogle Scholar
  39. Ruiz J., Tejero R. (2003) Heat flow, lenticulae spacing, and possibility of convection in the ice shell of Europa. Icarus 162: 362–373CrossRefADSGoogle Scholar
  40. Schilling, N., Khurana, K. K. and Kivelson, M. G.: 2004, J. Geophys. Res. 109: E05006, 10.1029/2003JE002166Google Scholar
  41. Schubert G., Spohn T., Reynolds R.T. (1986) Thermal histories, compositions and internal structures of the moons of the solar system. In: Burns J.A., Matthews M.S. (eds) Satellites. University of Arizona Press, Tucson, pp. 224–292Google Scholar
  42. Shoemaker E.M., Lucchita B.K., Wilhelms D.E., Plescia J.B., Squyres S.W. (1982) The geology of Ganymede. In: Morrison D. (eds) Satellites of Jupiter. University of Arizona Press, Tucson, pp. 435–520Google Scholar
  43. Showman A.P., Malhotra R. (1997) Tidal evolution into Laplace resonance and the resurfacing of Ganymede. Icarus 127: 93–111CrossRefADSGoogle Scholar
  44. Sohl, F., Hussmann, H., Schwentker, B., Spohn, T. and Lorenz, R. D.: 2003, J. Geophys. Res. 108: 5130, 10.1029/2003JE002044Google Scholar
  45. Solomatov V.S. (1995) Scaling of temperature- and stress-dependent viscosity convection. Physics of Fluids 7: 266–274CrossRefzbMATHADSGoogle Scholar
  46. Spohn T., Schubert G. (2003) Oceans in the icy Galilean satellites of Jupiter?. Icarus 161: 456–467CrossRefADSGoogle Scholar
  47. Squyres S.W., Reynolds R.T., Cassen P.M., Peale S.J. (1983) Liquid water and active resurfacing on Europa. Nature 301: 225–226CrossRefADSGoogle Scholar
  48. Stern, S. A. and McKinnon, W. B.: 1999, Lunar Planet. Sci. XXX, 1766 abstractGoogle Scholar
  49. Stern S.A., McKinnon W.B. (2000) Triton’s surface age and impactor population revisited in light of Kuiper belt fluxes: evidence for small Kuiper belt objects and recent geological activity. Astron. J. 119: 945–952CrossRefADSGoogle Scholar
  50. Tryka K., Brown R.H., Cruikshank D.P., Owen T.C., Geballe T.C., de Bergh C. (1994) Temperature of nitrogen ice on Pluto and its implications for flux measurements. Icarus 112: 513–527CrossRefPubMedADSGoogle Scholar
  51. Zahnle K., Schenk P., Levison H., Dones L. (2003) Cratering rates in the outer Solar System. Icarus 163: 263–289CrossRefADSGoogle Scholar
  52. Zimmer C., Khurana K.K., Kivelson M.G. (2000) Subsurface oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations. Icarus 147: 329–347CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departamento de Geodinámica, Facultad de Ciencias GeológicasUniversidad Complutense de MadridMadridSpain
  2. 2.Centro de Biología MolecularCSIC-Universidad Autónoma de MadridCantoblanco, MadridSpain

Personalised recommendations