Advertisement

Earth, Moon, and Planets

, Volume 95, Issue 1–4, pp 211–220 | Cite as

DEVELOPMENT OF AN ADVANCED DUST TELESCOPE

  • R. Srama
  • A. Srowig
  • M. Rachev
  • E. Grün
  • S. Auer
  • T. Conlon
  • A. Glasmachers
  • D. Harris
  • S. Helfert
  • S. Kempf
  • H. Linnemann
  • G. Moragas-Klostermeyer
  • V. Tschernjawski
Article

Abstract.

There are different types of dust particles in interplanetary space, such as dust from comets and asteroids, and interstellar grains traversing the solar system. Based on experience with current space dust instruments, a novel dust telescope is being developed. A dust telescope is a combination of a dust trajectory sensor for the identification and an analyzer for the elemental composition of the dust. Dust particles’ trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through a position-sensitive electrode system. The objective of the trajectory sensor is to measure dust charges in the range 10−16–10−13 C and dust speeds in the range 6–100 km/s. First tests with a laboratory setup have been performed. The chemical analyzer will have an impact area of 0.1 m2. It consists of a target with an acceleration grid and a single-stage reflectron for energy focusing, and a central ion detector. Results from SIMION simulations show that a mass resolution of MM>150 can be obtained.

Keywords

Dust Dust Particle Interplanetary Space Interstellar Dust Cosmic Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is supported by DLR grant 50OO0201 and NASA grant NAG5-11782.

References

  1. Auer, S.: 1996, in Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series, vol. 104, IAU Colloquium no. 150, Aug. 14–18, 1995, Gainesville, FL, 251–254Google Scholar
  2. Auer, S. and von Bun, F.: 1994, in M. E. Zolensky (ed.), Workshop on Particle Capture, Recovery, and Velocity/Trajectory Measurement Technologies. LPI Tech. Rept. 94-05, Lunar and Planetary Institute, Houston Texas, 21–25Google Scholar
  3. Auer S., Grün E., Srama S., Kempf S., Auer R., (2002). Planet Space Sci 50:773–779CrossRefADSGoogle Scholar
  4. Divine N., (1993). J Geophys Res 98:17029–17048CrossRefADSGoogle Scholar
  5. Dorschner J, Henning T. (1995). Astron Astrophys Rev 6:271–333CrossRefADSGoogle Scholar
  6. Grün E. et al., (1994). Astronomy & Astrophysics 286:915–924ADSGoogle Scholar
  7. Grün E., Zook H.A., Fechtig H., Giese R.H. (1985). Icarus 62:244–272CrossRefADSGoogle Scholar
  8. Jessberger, E. K. and Kissel, J.: 1991, in R. L. Newburn Jr., M. Neugebauer and J. Rahe (eds.), Comets in the Post-Halley Era 2, Kluwer Academic Publ., Dordrecht–Boston–London, 1075–1092Google Scholar
  9. Kempf S. et al., (2004). Icarus 171:317–335CrossRefADSGoogle Scholar
  10. Kempf S. et al., (2005). Science 307:1275–1277CrossRefADSGoogle Scholar
  11. Kissel J., (1986). ESA SP-1077:67–83ADSGoogle Scholar
  12. Kissel J. et al.: 2003, J. Geophys. Res. 108, 8114, DOI 10.1029/2003JE002091Google Scholar
  13. Kissel J., Krueger F.R., Silen J., Clark B.C., (2004). Science 304:1774–1776CrossRefPubMedADSGoogle Scholar
  14. Krueger F.R., Werther W., Kissel J., Schmid E.R., (2004). Rapid Commun. Mass Spectrom. 18:103–111PubMedCrossRefGoogle Scholar
  15. Love, S. G. and Brownlee D. E.: 1993, A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262:550–553CrossRefADSGoogle Scholar
  16. Morfill, G. et al.: 1986, in R. G. Marsden (ed.), The Sun and the Heliosphere in Three Dimensions, D. Reidel Publishing Co., Dordrecht, 455–474Google Scholar
  17. Oren, J.I. and Svedhem, H.: 2000, ESA ESTEC, Young Graduate Trainee Report.Google Scholar
  18. Rachev, M.: 2004, PhD thesis, Heidelberg, GermanyGoogle Scholar
  19. Srama, R. et al., (2004a). Space Sci. Rev., 114:465–518CrossRefADSGoogle Scholar
  20. Srama, R. et al., (2004b). ESA-SP 543:73–78ADSGoogle Scholar
  21. Srowig, A.: 2004, PhD thesis, Heidelberg, GermanyGoogle Scholar
  22. Sykes M.V., Walker R.G. (1992). Icarus 95:180–210CrossRefADSGoogle Scholar
  23. Zinner E., (1998). Ann. Rev. Earth and Planetary Sci. 26:147–188CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • R. Srama
    • 1
  • A. Srowig
    • 1
    • 2
  • M. Rachev
    • 1
  • E. Grün
    • 1
    • 3
  • S. Auer
    • 4
  • T. Conlon
    • 3
  • A. Glasmachers
    • 5
  • D. Harris
    • 3
  • S. Helfert
    • 6
  • S. Kempf
    • 1
  • H. Linnemann
    • 7
  • G. Moragas-Klostermeyer
    • 1
  • V. Tschernjawski
    • 8
  1. 1.MPI-KHeidelbergGermany
  2. 2.KIPHeidelbergGermany
  3. 3.HIGPHonoluluUSA
  4. 4.A&M AssocBasyeUSA
  5. 5.Bergische UnivWuppertalGermany
  6. 6.Helfert InformatikMannheimGermany
  7. 7.Univ. BraunschweigBraunschweigGermany
  8. 8.DLR GmbHBerlinGermany

Personalised recommendations