Earth, Moon, and Planets

, Volume 94, Issue 1–2, pp 13–29 | Cite as

Future Satellite Gravimetry for Geodesy

  • J. FluryEmail author
  • R. Rummel


After GRACE and GOCE there will still be need and room for improvement of the knowledge (1) of the static gravity field at spatial scales between 40 km and 100 km, and (2) of the time varying gravity field at scales smaller than 500 km. This is shown based on the analysis of spectral signal power of various gravity field components and on the comparison with current knowledge and expected performance of GRACE and GOCE. Both, accuracy and resolution can be improved by future dedicated gravity satellite missions. For applications in geodesy, the spectral omission error due to the limited spatial resolution of a gravity satellite mission is a limiting factor. The recommended strategy is to extend as far as possible the spatial resolution of future missions, and to improve at the same time the modelling of the very small scale components using terrestrial gravity information and topographic models.We discuss the geodetic needs in improved gravity models in the areas of precise height systems, GNSS levelling, inertial navigation and precise orbit determination. Today global height systems with a 1 cm accuracy are required for sea level and ocean circulation studies. This can be achieved by a future satellite mission with higher spatial resolution in combination with improved local and regional gravity field modelling. A similar strategy could improve the very economic method of determination of physical heights by GNSS levelling from the decimeter to the centimeter level. In inertial vehicle navigation, in particular in sub-marine, aircraft and missile guidance, any improvement of global gravity field models would help to improve reliability and the radius of operation.


Geodesy gravity field heights GNSS levelling inertial navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arabelos, D., Tscherning, C. C. 2001J. Geodesy75308312CrossRefGoogle Scholar
  2. Cazenave, A., Nerem, R. S. 2002Science297783784CrossRefPubMedGoogle Scholar
  3. Chatfield, A. B.: 1997, Fundamentals of high accuracy inertial navigation, in Progress in Astronautics and Aeronautics, Vol. 174, AIAA RestonGoogle Scholar
  4. Committee on Earth Gravity from Space1997Satellite Gravity and the GeosphereNational Academy PressWashington, D.CGoogle Scholar
  5. Cox, C. M., Chao, B. F. 2002Science297831833CrossRefPubMedGoogle Scholar
  6. Denker, H. and Torge, W.: 1998, The European Gravimetric Quasigeoid EGG97, in International Association of Geodesy Symposia, Vol. 119, Geodesy on the Move, SpringerGoogle Scholar
  7. ESA, European Space Agency: 1999, Gravity Field and Steady-State Ocean Circulation Mission (GOCE), Report for mission selection, SP-1233 (1), NoordwijkGoogle Scholar
  8. Flury, J.: 2002, Schwerefeldfunktionale im Gebirge: Modellierungsgenauigkeit, Messpunktdichte und Darstellungsfehler am Beispiel des Testnetzes Estergebirge, Deutsche Geodaetische Kommission, Series C 557, MünchenGoogle Scholar
  9. Flury, J.: 2005, J. Geodesy, in revisionGoogle Scholar
  10. Forsberg, R.: 1984, Local covariance functions and density distributions, Dep. of Geodetic Science Report 356, Ohio State Univ. ColumbusGoogle Scholar
  11. Gruber, Th.: 2001, Identification of Processing and Product Synergies for Gravity Missions in View of the CHAMP and GRACE Science Data System Developments, in Proceedings of 1st International GOCE User Workshop, ESA Publication Division, Report WPP-188Google Scholar
  12. Haines, K., Hipkin R., Beggan C., Bingley R., Hernandez F., Holt J., Baker T. and Bingham R. J.: 2003, in G. Beutler, M. Drinkwater, R. Rummel and R. von Steiger (eds.), Earth Gravity Field from Space: From Sensors to Earth Sciences, Space Sciences Series of ISSI Vol. 18, Kluwer, pp. 205–216Google Scholar
  13. Ihde, J., Adam J., Gurtner W., Harsson B. G., Sacher M., Schlüter W. and Wöppelmann G.: 2002, The Height Solution of the European Vertical Reference Network (EUVN), in EUREF-Publication Nr. 11/I pp. 53–70, Mitteilungen des Bundesamtes für Kartographie und Geodäsie, 25, Frankfurt am MainGoogle Scholar
  14. Ilk, K. H., Flury , Rummel R., Schwintzer P., Bosch W., Haas C., Schröter J., Stammer D., Zahel W., Miller H., Dietrich R., Huybrechts P., Schmeling H., Wolf D., Götze H.J., Riegger J., Bárdossy A., Güntner A. and Gruber T.: 2005, Mass Transport and Mass Distribution in the Earth System, Contribution of the new generation of satellite gravity and altimetry missions to geosciences, 2nd edn, GOCE Projektbüro TU München, GFZ PotsdamGoogle Scholar
  15. Lambeck, K.: 1988, Geophysical Geodesy: The Slow Deformation of the Earth. Oxford University PressGoogle Scholar
  16. Lemoine, F. G., Kenyon S. C., Factor J. K., Trimmer R. G., Pavlis N. K., Chinn D. S., Cox C. M., Klosko S. M., Luthcke S. B., Torrence M. H., Wang Y. M., Williamson R. G., Pavlis E. C., Rapp R. H. and Olson T. R.: 1998, The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP-1998-206861, Goddard Space Flight Center, GreenbeltGoogle Scholar
  17. Marti, U., Schlatter A. and Brockmann E.: 2003, Analysis of vertical movements in Switzerland, Presentation EGS-AGU-EUG general assembly Nice 2003Google Scholar
  18. Reigber, C., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, C., Balmino, G., Biancale, R., Lemoine, J.-M., Loyer, S., Bruinsma, S., Perosanz, F., Fayard, T. 2003Adv. Space Res3118831888CrossRefGoogle Scholar
  19. Rummel, R.: 2002, Global unification of height systems and GOCE, in M. Sideris (eds.), Gravity, geoid and geodynamics, IAG symposium Banff 2000, Springer, pp. 13–20Google Scholar
  20. Rummel, R.: 2004, Earth, Moon and Planets, this issueGoogle Scholar
  21. Sacher, M., Ihde, J. and Seeger, H.: 1999, Preliminary Transformation Relations between National European Height Systems and the United European Levelling Network (UELN), in Report on the Symposium of the IAG Subcommission for Europe (EUREF), pp. 80–86, Prague, 2–5 June 1999, Veröffentlichung der Bayer. Komm. für die Internationale Erdmessung, MünchenGoogle Scholar
  22. Schwarz, K. P., Colombo, O., Hein, G., Knickmeyer, E. T.: 1992, Requirements for airborne vector gravimetry, in From Mars to Greenland, IAG symposium 1991, Springer, pp. 273–283Google Scholar
  23. Schrama, E. J. O.: 2003, in: G. Beutler, M. Drinkwater, R. Rummel and R. von Steiger (eds.), Earth Gravity Field from Space: From Sensors to Earth Sciences, Space Sciences Series of the ISSI 18, Kluwer, pp. 179–194Google Scholar
  24. Tapley, B.D., Bettadpur, S., Ries, J.C., Thompson, P.F., Watkins, M.M. 2004aScience305503505CrossRefGoogle Scholar
  25. Tapley, B. D., Bettadpur, S., Watkins, M. and Reigber, C.: 2004b, Geophys. Res. Lett. 31, L09607Google Scholar
  26. Vermeersen, B.: 2004, Earth, Moon Planets, this issueGoogle Scholar
  27. Wahr, J., Molenaar, M., Bryan, F. 1998J. Geophys. Res1033020530230CrossRefGoogle Scholar
  28. Wenzel, H. G., Arabelos, D. 1981Zeitschrift für Vermessungswesen106234243Google Scholar
  29. Wünsch, J., Thomas, M., Gruber, Th. 2001Geophys. J. Int14728434Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institut für Astronomische und Physikalische GeodäsieTU MünchenGermany

Personalised recommendations