Earth, Moon, and Planets

, Volume 94, Issue 1–2, pp 3–11 | Cite as

Geoid and Gravity in Earth Sciences – An Overview

  • R. RummelEmail author


Precise global geoid and gravity anomaly information serves essentially three different kinds of applications in Earth sciences: gravity and geoid anomalies reflect density anomalies in oceanic and continental lithosphere and the mantle; dynamic ocean topography as derived from the combination of satellite altimetry and a global geoid model can be directly transformed into a global map of ocean surface circulation; any redistribution or exchange of mass in Earth system results in temporal gravity and geoid changes. After completion of the dedicated gravity satellite missions GRACE and GOCE a high standard of global gravity determination, both of the static and of the time varying field will be attained. Thus, it is the right time to investigate the future needs for improvements in the various fields of Earth sciences and to define the right strategy for future gravity field satellite missions.


Geoid GOCE GRACE gravity field satellite geodesy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beutler, G., Rummel, R., Drinkwater, M. R. and von Steiger R.: (eds.), 2003, Earth Gravity Field from Space – from Sensors to Earth Sciences. Space Science Series of ISSI 18, Kluwer Academic PublishersGoogle Scholar
  2. Cazenave, A., Dominh, K. , Allegre, C. J., Marsh, J. G. 1986J. Geophys Res. series91B1143911450Google Scholar
  3. Cazenave, A., Nerem, R. S. 2002Sci. Series297783784Google Scholar
  4. Committee on Earth Gravity from Space1997Satellite Gravity and the GeosphereNational Academy PressWashington, D.CGoogle Scholar
  5. Cox, C. M., Chao, B. F. 2002Sci. Ser297831833Google Scholar
  6. ESA: 1999, Gravity Field and Steady-State Ocean Circulation Mission. ESA SP-1233 (1), NoordwijkGoogle Scholar
  7. Kaban, M. K., , Schwintzer, P., Tikhotsky, S. A. 1999Geophys. J. Int. Ser136519536CrossRefGoogle Scholar
  8. King, S. D.: 2002, J Geophys. Res. Ser. 107 B1, ETG 2–1 to 2–10Google Scholar
  9. Lithgow-Bertelloni, C., Richards, M. A. 1998Rev. Geophys12778Series 36CrossRefGoogle Scholar
  10. Negredo, A. M., Carminati, E., Barba, S., Sabadini, R. 1999Geophys. Res. Lett1319451948, Series 26CrossRefGoogle Scholar
  11. Open University Course Team1989Ocean CirculationButterworth-HeinemannOxfordGoogle Scholar
  12. Rummel, R.: 2003, in G. Beutler, M. R. Drinkwater, R. Rummel, R. von Steiger, (eds.), Earth Gravity Field from Space – from Sensors to Earth Sciences. Space Science Series of ISSI 18, 1–14, Kluwer Academic PublishersGoogle Scholar
  13. Schubert, G., Turcotte, D. L. and Olson, P.: 2001, Mantle Convection in the Earth and Planets. Cambridge University PressGoogle Scholar
  14. Simons, M. and Hager, B. H.: 1997, Nature, series 390, 500–504Google Scholar
  15. Snieder, R., Trampert, J. 2000Lect. Notes Earth Sci9593164 Springer, BerlinGoogle Scholar
  16. Vermeersen, B.: 2003, in G. Beutler, M. R. Drinkwater, R. Rummel and R. von Steiger (eds.), Earth Gravity Field from Space – from Sensors to Earth Sciences. Space Science Series of ISSI 18, 105–113, KluwerGoogle Scholar
  17. Watts, A. B.: 2001, Isostasy and Flexure of the Lithosphere. Cambridge University PressGoogle Scholar
  18. Zerbini, S., Achache, J., Anderson, A. J., Arnet, F., Geiger, A., Klingelé, E., Sabadini, R. and Tinti, S.: 1992, Study of Geophysical Impact of High-Resolution Earth Potential Field Information. ESA-study, final reportGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institut für Astronomische und Physikalische GeodäsieTU MünchenGermany

Personalised recommendations