Advertisement

Earth, Moon, and Planets

, Volume 95, Issue 1–4, pp 671–679 | Cite as

Experimental Radar Studies of Anisotropic Diffusion of High Altitude Meteor Trails

  • W. K. Hocking
Article

Abstract

At altitudes above 93 km in the atmosphere, magnetic and electric fields can affect the modes and rates of non-turbulent diffusion of ionized meteor trails. Anisotropic diffusion is expected. Most theories of anisotropic diffusion, and indeed most experimental studies, have concentrated on the effects of the magnetic field in producing this anisotropy, and different rates of expansion are expected in directions parallel to and perpendicular to the magnetic field lines. In this study, we use interferometric meteor radars to investigate the dependence of the ambipolar diffusion coefficient on viewing direction relative to the magnetic field, and show that the dependence is at best weak when daily averages are used. We then demonstrate that the reason for this effect is that the positions of maximum and minimum diffusion rates varies as a function of time of day, and that daily averaging masks the anisotropy. One possibility to account for the observations is that this strong diurnal variation is a consequence of the electric fields in the upper atmosphere, which are often tidally driven. An alternative possibility is a diurnal cycle in mean meteor entrance speeds. We lean towards the first hypothesis, but both possibilities are discussed. We demonstrate our results with data from several sites, but particularly using the Clovar radar near London, Ontario, Canada.

Keywords

Aniostrophy diffusion diurnal electric field ionosphere magnetic field meteors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ceplecha, Z., Borovicka, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubcan, V., Simek, M. (1998) Space Sci. Rev 84: 327-471CrossRefADSGoogle Scholar
  2. Cervera, M. A., Reid, I. M. (2000) Radio Sci 35: 833-843CrossRefADSGoogle Scholar
  3. Dyrud, L. P., Oppenheim, M. M., Endt, A. F. (2001) Geophys. Res. Lett 28: 2775-2779CrossRefADSGoogle Scholar
  4. Dyrud, L. P., Oppenheim, M. M., Close, S. and Hunt, S.: 2002, Geophys. Res. Lett., GL015953Google Scholar
  5. Elford, W. G. and Elford, M. T.: 2001, in Barbara Warmbein (ed.), Proceedings of the Meteoroids 2001 Conference, 6–10 August 2001, Kiruna, Sweden. ESA SP-495, ESA Publications Division, Noordwijk, ISBN 92-9092-805-0, pp. 419–423Google Scholar
  6. Heritage, J. L., Fay, W. J., Bowen, E. D. (1962) J. Geophys. Res 67: 953-959CrossRefADSGoogle Scholar
  7. Hocking, W. K. (1999) Geophys. Res. Lett 26: 3297-3300CrossRefADSGoogle Scholar
  8. Hocking, W. K. (2004) Annales Geophysical 22: 3805-3814ADSCrossRefGoogle Scholar
  9. Hocking, W. K., Fuller, B., Vandepeer, B. (2001a) J. Atmos. Solar-Terr. Phys. 63: 155-169CrossRefADSGoogle Scholar
  10. Hocking, W. K., Kelley, M. C., Rogers, R., Brown, W. O. J., Moorcroft, D., Maurice, J. -P. St. (2001b) Radio Sci 36: 1839-1857CrossRefADSGoogle Scholar
  11. Hocking, W. K., Thayaparan, T., Jones, J. (1997) Geophys. Res. Lett 24: 2977-2980CrossRefADSGoogle Scholar
  12. Jones, W. (1991) Planet. Space Sci 39: 1283-1288CrossRefADSGoogle Scholar
  13. Jones, J., Webster, A. R., Hocking, W. K. (1998) Radio Sci 33: 55-65CrossRefADSGoogle Scholar
  14. Oppenheim, M. M., Vom Endt, A. F., Dyrud, L. P. (2000) Geophys. Res. Lett 27: 3173-3176CrossRefADSGoogle Scholar
  15. Robson, R. E. (2001) Phys. Rev. E 63: 026404-1-026404-5CrossRefADSGoogle Scholar
  16. Thayaparan, T., Hocking, W. K., MacDougall, J. (1995) Radio Sci 30: 1293-1309CrossRefADSGoogle Scholar
  17. Zhou, Q. H., Mathews, J. D., Nakamura, T. (2001) Geophys. Res. Lett 28: 1399-1402CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Physics and AstronomyUniversity of Western OntarioLondonCanada

Personalised recommendations