Earth, Moon, and Planets

, Volume 95, Issue 1–4, pp 501–512 | Cite as

Bolide Energy Estimates from Infrasonic Measurements

  • Wayne N. Edwards
  • Peter G. Brown
  • Douglas O. Revelle


The acoustic amplitude-yield relationships, including formal errors, for a population of energetic (>0.05 kt) and well-observed bolide events have been investigated. Using various infrasonic signal measurements as a function of range, these data have been calibrated against optical yield estimates from satellite measurements. Correction for the presence of stratospheric winds has also been applied to the observations and is found to be small, suggesting that either scatter is dominated by other variations amongst the fireball population such as differing burst altitudes and greater or lesser amounts of fragmentation or the magnitude of the variability in the stratospheric winds, which can be comparable to or even exceed the strength of the winds themselves. Comparison to similar point source, ground-level nuclear and high explosive airwave data shows that bolide infrasound is consistently lower in amplitude. This downward shift relative to nuclear and HE data is interpreted as due in part to increased weak non-linearity during signal propagation from higher altitudes. This is a likely explanation, since mean estimates of the altitude of maximum ene0rgy deposition along the bolide trajectory was found to be between 20 and 30 km altitude for this fireball population.


Camera Network Infrasonic Signal Stratospheric Wind Wind Correction Source Altitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Menahem, A. (1975) Phys. Earth Plan. Sci. 11: 1-35CrossRefADSGoogle Scholar
  2. Borovička, J., Kalenda, P. (2003) Meteorit. Plan. Sci. 38: 1023-1043ADSGoogle Scholar
  3. Brown, P.G., Whitaker, R.W., ReVelle, D.O. (2002a) Geophys. Res. Lett. 29: 1-4Google Scholar
  4. Brown, P.G., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., Worden, S.P. (2002b) Nature. 420: 314-316ADSGoogle Scholar
  5. Brown, P.G., ReVelle, D.O., Tagliaferri, E., Hildebrand, A.R. (2002) Meteorit. Plan. Sci. 37: 661-675ADSGoogle Scholar
  6. Brown, P.G., Kalenda, P., ReVelle, D.O., Borovička, J. (2003) Meteorit. Plan. Sci. 38: 989-1003ADSCrossRefGoogle Scholar
  7. Brown, P., Pack, D., Edwards, W.N., ReVelle, D.O., Yoo, B.B., Spalding, R.E., Tagliaferri, E. (2004) Meteorit. Plan. Sci. 39: 1781-1796ADSGoogle Scholar
  8. Tagliaferri E., Spalding R., Jacobs C., Worden S.P., Erlich A. (1994). Hazards due to Comets and Asteroids, The University of Arizona Press, pp. 199–220Google Scholar
  9. Ceplecha, Z., Borovička, J., Elford, W.G., ReVelle, D.O., Hawkes, R.L., Porubčan, V., Šimek, S. (1998) Space Science Reviews. 84: 327-471CrossRefADSGoogle Scholar
  10. Docobo, J., Ceplecha, Z. (1999) Astron. Astrophys. Suppl. Ser. 138: 1-9CrossRefADSGoogle Scholar
  11. Dziewonski A., Hales A. (1972). in Bolt B. (ed.). Methods in Computational Physics (vol. 11), Academic Press, New York, pp. 39–84Google Scholar
  12. Hedin, A.E., Fleming, E.L., Manson, A.H., Schmidlin, F.J., Avery, S.K., Clark, R.R., Franke, S.J., Fraser, G.J., Tsuda, T., Vial, F., Vincent, R.A. (1996) J. Atmos. Terr. Phys. 58: 1421-1447CrossRefADSGoogle Scholar
  13. Hildebrand, A. R., Brown, P., Crawford, D., Boslough, M., Chael, E., ReVelle, D., Doser, D., Tagliaferri, E., Rathbun, D., Cooke, D., Adcock, C, and Karner, J. (1999). LPSC XXX, Abstract #1525, Lunar and Planetary Science Institute, HoustonGoogle Scholar
  14. Pichon, A. L., Guerin, J. M., Blanc, E. and Reymond, D. (2002). JGR. 107: 4709, doi:10.1029/2001JD001283Google Scholar
  15. Reed, J.W. (1977) J. Acous. Soc. Amer. 61: 39-47CrossRefADSGoogle Scholar
  16. ReVelle, D.O. (1976) JGR. 81: 1217-1230ADSGoogle Scholar
  17. ReVelle, D. O., Whitaker, R. W. (1997). LA-UR-96–3594, 1–15Google Scholar
  18. ReVelle, D. O., Whitaker, R. W., Armstrong, W. T. (1998). LA-UR-98–2893, 1–12Google Scholar
  19. Spurny, P., Oberst, J., Heinlein, D. (2003) Nature. 423: 151-153PubMedCrossRefADSGoogle Scholar
  20. United States Committee on Extension to the Standard Atmosphere: 1976). U.S. Standard Atmosphere, 1976, U.S. Government Printing Office , WashingtonGoogle Scholar
  21. Webb, W.L. (1966) Structure of the Stratosphere and Mesosphere. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Wayne N. Edwards
    • 1
  • Peter G. Brown
    • 2
  • Douglas O. Revelle
    • 3
  1. 1.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  2. 2.Canada Research Chair in Meteor Science, Department of Physics and AstronomyUniversity of Western OntarioLondonCanada
  3. 3.Atmospheric, Climate and Environmental DynamicsMeteorological Modeling Team, Los Alamos National LaboratoryLos AlamosNew MexicoUSA

Personalised recommendations