Earth, Moon, and Planets

, Volume 94, Issue 1–2, pp 83–91 | Cite as

Ice Mass Balance and Ice Dynamics from Satellite Gravity Missions

  • J. FluryEmail author


An overview of advances in ice research which can be expected from future satellite gravity missions is given. We compare present and expected future accuracies of the ice mass balance of Antarctica which might be constrained to 0.1–0.3 mm/year of sea level equivalent by satellite gravity data. A key issue for the understanding of ice mass balance is the separation of secular and interannual variations. For this aim, one would strongly benefit from longer uninterrupted time series of gravity field variations (10 years or more). An accuracy of 0.01 mm/year for geoid time variability with a spatial resolution of 100 km would improve the separability of ice mass balance from mass change due to glacial isostatic adjustment and enable the determination of regional variations in ice mass balance within the ice sheets. Thereby the determination of ice compaction is critical for the exploitation of such high accuracy data. A further benefit of improved gravity field models from future satellite missions would be the improvement of the height reference in the polar areas, which is important for the study of coastal ice processes. Sea ice thickness determination and modelling of ice bottom topography could be improved as well.


Geoid time variation ice mass balance ice thickness satellite gravity missions sea level change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Committee on Earth Gravity from Space1997Satellite Gravity and the GeosphereNational Academy PressWashington, D.C.Google Scholar
  2. Huybrechts, P., Dietrich, R., Miller, H., Haas, C. 2004Ice mass balance and sea levelIlk, K.H.Flury, J.Rummel, R.Schwintzer, P.Bosch, W.Haas, C.Schröter, J.Stammer, D.Zahel, W.Miller, H.Dietrich, R.Huybrechts, P.Schmeling, H.Wolf, D.Riegger, J.Bardossy, A.Güntner, A. eds. Mass Transports and Mass Distribution in the System Earth. Contribution of the New Generation of Satellite Gravity and Altimetry Missions to GeosciencesTU GFZ PotsdamMünchen4860Google Scholar
  3. Huybrechts, P. 2002Quat.Sci.Rev21203231CrossRefGoogle Scholar
  4. Hvidegaard S. M. and Forsberg R.: 2002, Geophys. Res. Lett. 29(20), 1952, doi:10.1029/2001GL014474.Google Scholar
  5. James, T.S., Ivins, E.R. 1997J.Geoph.Res.Vol102605634doi:10.1029/96JB02855CrossRefGoogle Scholar
  6. Joughin, I., Tulaczyk, S. 2002Science295476480CrossRefPubMedGoogle Scholar
  7. Laxon, S., Peacock, N., Smith, D. 2003Nature425947950CrossRefPubMedGoogle Scholar
  8. Rignot, E., Thomas, R.H. 2002Science2971502CrossRefPubMedGoogle Scholar
  9. Thomas, R.H. 2001EOS Transactions, AGU82369373Google Scholar
  10. Velicogna, I., Wahr, J. 2002aJ. Geophys. Res1072263doi:10.1029/2001JB000708CrossRefGoogle Scholar
  11. Velicogna, I., Wahr, J. 2002bJ. Geophys. Res1072376doi:10.1029/2001JB001735.CrossRefGoogle Scholar
  12. Venegas, S., Drinkwater, M.R., Schaffer, G. 2001Geophys.Res.Lett2833013304CrossRefGoogle Scholar
  13. Vermeersen, L. L. A.: 2004, Challenges from Solid Earth Dynamics for Satellite Gravity Field Missions in the Post-GOCE Era. This issue.Google Scholar
  14. Wahr, J., Wingham, D., Bentley, C. 2000J.Geophys.Res1051627916294CrossRefGoogle Scholar
  15. Wahr, J., Velicogna, I. 2003Space Sci. Rev108319330CrossRefGoogle Scholar
  16. Woodworth, Ph.: 2004, Global Sea Level Change. This issue.Google Scholar
  17. Wu, X., Watkins, M.M., Ivins, E.R., Kwok, R., Wang, P., Wahr, J. 2002J. Geophys.Res1072291doi:10.1029/2001JB000543CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenGermany

Personalised recommendations