Earth, Moon, and Planets

, Volume 94, Issue 1–2, pp 113–142 | Cite as

Science Requirements on Future Missions and Simulated Mission Scenarios

  • Nico SneeuwEmail author
  • Jakob Flury
  • Reiner Rummel


The science requirements on future gravity satellite missions, following from the previous contributions of this issue, are summarized and visualized in terms of spatial scales, temporal behaviour and accuracy. This summary serves the identification of four classes of future satellite mission of potential interest: high-altitude monitoring, satellite-to-satellite tracking, gradiometry, and formation flights. Within each class several variants are defined. The gravity recovery performance of each of these ideal missions is simulated. Despite some simplifying assumptions, these error simulations result in guidelines as to which type of mission fulfils which requirements best.


Error simulations gravity field geoid geoscience requirements satellite missions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfriend, K.T., Schaub, H. 2003AAS J. Astron. Sci.48249267Google Scholar
  2. Balmino, G., Perosanz, F., Rummel, R., Sneeuw, N., Sünkel, H. and Woodworth, P.: 1998, ‘European Views on Dedicated Gravity Field Missions: GRACE and GOCE’, An Earth Sciences Division Consultation Document, ESA, ESD-MAG-REP-CON-001, NoordwijkGoogle Scholar
  3. Bender P.L., Hall J.L., Ye J., Klipstein W.M. (2003) in G. Beutler, R. Rummel, M. Drinkwater and R. von Steiger (eds.), Earth Gravity Field from Space – from Sensors to Earth Sciences, Space Science Series of ISSI, 18, pp. 377–384, Kluwer Academic Publishers, DordrechtGoogle Scholar
  4. European Space Agency: 1999, ‘Gravity Field and Steady-State Ocean Circulation Mission’, ESA SP-1233(1), report for mission selection of the four candidate earth explorer missions, ESA, NoordwijkGoogle Scholar
  5. Han S.C., Jekeli C., Shum C.K. (2004) J. Geophys. Res. 109(B04403), doi:10.1029/2003JB002501.Google Scholar
  6. Jet Propulsion Laboratory: 1999, ‘GRACE Science and Mission Requirements Document’, JPL 327-200, Rev. B, JPL, Pasadena, CA.Google Scholar
  7. McGuirk, J. M., Foster, G. T., Fixler, J. B., Snadden, M. J. and Kasevich, M. A.: 2002, Phys. Rev. A 65, doi:10.1103/PhysRevA.65.033608.Google Scholar
  8. Reigber, Ch., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, Ch., Balmino, G., Biancale, R., Lemoine, J.-M., Loyer, S., Bruinsma, S., Perosanz, F. and Fayard, T.: 2003, Adv. Space Res. 31(8), 1883–1888, doi:10.1016/S0273–1177(03)00162-5.Google Scholar
  9. Rummel, R.: 2003, in G. Beutler, R. Rummel, M. Drinkwater and R. von Steiger (eds.), Earth Gravity Field from Space – from Sensors to Earth Sciences Space Science Series of ISSI, 18, pp. 1–14, Kluwer Academic Publishers, Dordrecht.Google Scholar
  10. Schrama, E.J.O. 1991J.Geophys.Res.962004120051Google Scholar
  11. Schrama, E. J. O.: ‘Impact of Limitations in Geophysical Background Models on Follow-on Gravity Missions’, this issue.Google Scholar
  12. Sneeuw, N.: 2000, ‘A Semi-Analytical Approach to Gravity Field Analysis from Satellite Observations’, Deutsche Geodätische Kommission, Reihe C, Heft Nr. 527.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Geomatics EngineeringUniversity of CalgaryAlbertaCanada
  2. 2.Institut für Astronomische und Physikalische GeodäsieTUMünchen

Personalised recommendations