Mobile Networks and Applications

, Volume 24, Issue 5, pp 1499–1508 | Cite as

ABEP Performance of AF System Employing QSSK over IoT Network

  • Hemanta Kumar SahuEmail author
  • P. R. Sahu


Quadrature space shift keying (QSSK) modulation in cooperative communication, combined with cooperative relaying, improves the reliability in communication and enhances the overall spectral efficiency. Here, QSSK scheme is analyzed for complete uplink and downlink transmission system between a base station and a connected device for Internet-of-Things (IoT) application with dual-hop amplify-and-forward (AF) relaying systems using a single relay, multiple relays and relay selection techniques. Analytical expressions for cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio are derived and used to evaluate the average bit error probability (ABEP) of QSSK modulation in mixed Rayleigh-Rician fading channel. The obtained ABEP expressions are in the form of Whittaker function which can be numerically evaluated using its numerical or series representation. Numerical and simulation results are presented to illustrate the impact of fading parameters on the system performance.


SSK modulation Mixed fading MIMO communication Rayleigh fading Rician fading 



  1. 1.
    Chau Y, Yu S-h (2001) Space modulation on wireless fading channels. Proc IEEE Veh Technol Confs 3:1668–1671Google Scholar
  2. 2.
    Jeganathan J, Ghrayeb A, Szczecinski L, Ceron A (2009) space shift keying modulation for MIMO channels. IEEE Trans Wireless Commun 8:3692–3703CrossRefGoogle Scholar
  3. 3.
    Di Renzo M, Haas H (2010) A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami-m fading channels. IEEE Trans Commun 58(9):2590–2603CrossRefGoogle Scholar
  4. 4.
    Di Renzo M, Haas H (2011) Space shift keying (SSK) MIMO over correlated Rician fading channels: performance analysis and a new method for transmit-diversity. IEEE Trans Commun 59(1):116–129CrossRefGoogle Scholar
  5. 5.
    Mokh A, Helard M, Crussiere M (2017) Space shift keying modulations for low complexity internet-of- things devices. In: Global Communications Conference (GLOBECOM), IEEEGoogle Scholar
  6. 6.
    Afana A, Mesleh R, Ikki S, Atawi IE (2016) Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying. IEEE Commun Lett 20(2):240– 243CrossRefGoogle Scholar
  7. 7.
    Mesleh R, Ikki SS, Aggoune HM (2015) Quadrature spatial modulation. IEEE Trans Veh Technol 64 (6):2738–2742CrossRefGoogle Scholar
  8. 8.
    Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ribeiro A, Cai X, Giannakis G (2005) Symbol error probabilities for general cooperative links. IEEE Trans Wireless Commun 4:1264–1273CrossRefGoogle Scholar
  10. 10.
    Mesleh R, Ikki S, Alwakeel M (2011) Performance analysis of space shift keying with amplify and forward relaying. IEEE Commun Lett 15(12):1350–1352CrossRefGoogle Scholar
  11. 11.
    Mesleh R, Ikki S, Aggoune H, Mansour A (2012) Performance analysis of space shift keying (SSK) modulation with multiple cooperative relays. EURASIP J Adv Signal Process 2012(1):201–210CrossRefGoogle Scholar
  12. 12.
    Xie X, Zhao Z, Peng M, Wang W (2012) Spatial modulation in two-way network coded channels: performance and mapping optimization. In: Proc IEEE Int Symp Pers, Indoor, Mobile Radio Commun, Sydney, NSW, Australia, pp 72– 76Google Scholar
  13. 13.
    Althunibat S, Mesleh R (2018) Performance analysis of quadrature spatial modulation in two-way relaying cooperative networks, vol 12CrossRefGoogle Scholar
  14. 14.
    Som P, Chockalingam A (2013) End-to-end BER analysis of space shift keying in decode-and-forward cooperative relaying. In: Proc IEEE WCNC, pp 3465–3470Google Scholar
  15. 15.
    Yarkin F, Altunbas I, Basar E (2017) Source transmit antenna selection for space shift keying with cooperative relays. IEEE Commun Lett 21(5):1211–1214. 166–173CrossRefGoogle Scholar
  16. 16.
    Suraweera H, et al. (2009) Two hop amplify-and-forward transmission in mixed Rayleigh and Rician fading channels. IEEE Commun Lett 13(4):227–229CrossRefGoogle Scholar
  17. 17.
    Krikidis I, Thompson JS, McLaughlin S, Goertz N (2008) Amplifyand-forward with partial relay selection. IEEE Commun Lett 12:235–237CrossRefGoogle Scholar
  18. 18.
    Lv W, et al. (2018) Degrees of freedom of the circular multirelay MIMO interference channel in IoT networks. IEEE Internet Things J 5(3):1957–1966CrossRefGoogle Scholar
  19. 19.
    Tian R, Liang Y, Tan X, Li T (2017) Overlapping user grouping in IoT oriented massive MIMO systems. IEEE Access 5:14177–14186CrossRefGoogle Scholar
  20. 20.
    Lv T, Lin Z, Huang P, Zeng J (2018) Optimization of the Energy-Efficient Relay-Based Massive IoT Network. IEEE Internet Things J 5(4)CrossRefGoogle Scholar
  21. 21.
    Durgin GD, Rappaport TS, de Wolf DA (2002) New analytical models and probability density functions for fading in wireless communications. IEEE Trans Commun 50(6):1005– 1015CrossRefGoogle Scholar
  22. 22.
    Simon MK, Alouini M-S (2005) Digital Communication over Fading Channels, 2nd edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Gradient IS, Ryzhik IM (2000) Table of Integrals, Series, and Products, 6th edn. Academic Press, CambridgeGoogle Scholar
  24. 24.
    Papoulis A, Unnikrishna S (2002) Pillai,“Probability, Random Variable and Stochastic Processes”, 4th edition International editionGoogle Scholar
  25. 25.
    Peenfold R, Vanden-Brychkov JM, Grandison S (2007) Monotonicity of some modified Bessel function products. Integral Transform Spec Funct 118(12):139–144. pp 1794–1799, Apr. 2013MathSciNetCrossRefGoogle Scholar
  26. 26.
    Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and Series, vol 1. Gordon and Breach Science Publishers, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical SciencesIIT BhubaneswarOdishaIndia

Personalised recommendations