Mobile Networks and Applications

, Volume 24, Issue 2, pp 630–642 | Cite as

Performance Analysis of MIMO SWIPT Relay Network with Imperfect CSI

  • Tran Manh Hoang
  • Xuan Nam Tran
  • Nguyen Thanh
  • Le The DungEmail author


In this paper, we consider a dual-hop multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer (SWIPT) relay network, where the source node (SN) uses a transmission antenna selection (TAS) scheme to concurrently send information and energy to the single-antenna relay node (RN). This helps to utilize the harvested energy to forward the received signal. In addition, the destination node (DN) employs the maximum ratio combining (MRC) scheme to process this forwarded signal. The performance of this MIMO SWIPT relay system is investigated in imperfect channel state information (CSI) condition. Specifically, we derive the exact and approximate closed-form expressions for the outage probability, the average capacity, and the symbol error probability (SEP). This is the first time the exact and approximate formulas for the SEP of the energy harvesting networks are investigated. The Monte Carlo simulation results are provided to demonstrate the relevance of the developed analytical results, showing that the system’s performance is significantly impacted by the CSI imperfection, the number of antennas, and the energy harvesting duration.


MIMO Relay Transmit antenna selection Maximum ratio combining Energy harvesting Imperfect CSI 



Probability function


Probability density function (PDF)


Cumulative distribution function (CDF)


Gamma function

\({\Gamma } \left ({ \cdot , \cdot } \right )\)

Incomplete gamma function

\(\mathcal {CN}(\mu ,\sigma ^{2})\)

Circularly symmetric complex normal distribution with mean \(\mu \) and variance \(\sigma ^{2}\)

\(\mathbb {E}\left \{\cdot \right \}\)

Statistical expectation operator

\({\mathcal {K}}_{n}\left (\cdot \right )\)

Modified Bessel function of the second kind of order n

\(E_{n}\left (. \right )\)

Integral exponential function of order n


Whittaker function [32]


  1. 1.
    David K, Berndt H (2018) 6G vision and requirements: is there any need for beyond 5G. IEEE Veh Technol Mag (13)3:72–80Google Scholar
  2. 2.
    Nguyen LD (2018) Resource allocation for energy efficiency in 5G wireless networks. EAI Endorsed Trans Ind Netw Intell Syst 5:14Google Scholar
  3. 3.
    Varshney LR (2008) Transporting information and energy simultaneously. In: Proceedings of 2008 IEEE international symposium on information theory. IEEE, pp 1612–1616Google Scholar
  4. 4.
    Lu X, Wang P, Niyato D, Kim DI, Han Z (2015) Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun Surv Tutorials 17(2):757–789CrossRefGoogle Scholar
  5. 5.
    Zhang R, Ho CK (2013) MIMO Broadcasting for simultaneous wireless information and power transfer. IEEE Trans Commun 12(5):1989–2001Google Scholar
  6. 6.
    Zhou X, Zhang R, Ho CK (2013) Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans Commun 61(11):4754–4767CrossRefGoogle Scholar
  7. 7.
    Ding Z, Perlaza SM, Esnaola I, Poor HV (2014) Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans Wirel Commun 13(2):846–860CrossRefGoogle Scholar
  8. 8.
    Nasir AA, Zhou X, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wirel Commun 12(7):3622–3636CrossRefGoogle Scholar
  9. 9.
    Do NT, da Costa DB, Duong TQ, Bao VNQ, An B (2017) Exploiting direct links in multiuser multirelay SWIPT cooperative networks with opportunistic scheduling. IEEE Trans Wirel Commun 16(8):5410–5427CrossRefGoogle Scholar
  10. 10.
    Dong Y, Hossain MJ, Cheng J (2016) Performance of wireless powered amplify and forward relaying over nakagami-m fading channels with nonlinear energy harvester. IEEE Commun Lett 20(4):672–675CrossRefGoogle Scholar
  11. 11.
    Do TN, da Costa DB, Duong TQ, An B (2018) Improving the performance of cell-edge users in MISO-NOMA systems using TAS and SWIPT-based cooperative transmissions. IEEE Trans Green Commun Netw 2(1):49–62CrossRefGoogle Scholar
  12. 12.
    Do NT, Da Costa DB, Duong TQ, An B (2017) A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Commun Lett 21(3):664–667CrossRefGoogle Scholar
  13. 13.
    Hoang TM, Van Son V, Dinh NC, Hiep PT (2018) Optimizing duration of energy harvesting for downlink NOMA full-duplex over Nakagami-m fading channel. AEU-Int J Electron Commun 95:199–206CrossRefGoogle Scholar
  14. 14.
    Hoang TM, Tan NT, Hoang NH, Hiep PT Performance analysis of decode-and-forward partial relay selection in NOMA systems with RF energy harvesting, Wireless Networks, pp 1–11.
  15. 15.
    Radaydeh RM (2009) Impact of delayed arbitrary transmit antenna selection on the performance of rectangular QAM with receive MRC in fading channels. IEEE Commun Lett 6:13Google Scholar
  16. 16.
    Suraweera HA, Soysa M, Tellambura C, Garg HK (2010) Performance analysis of partial relay selection with feedback delay. IEEE Signal Process Lett 17(6):531–534CrossRefGoogle Scholar
  17. 17.
    Michalopoulos DS, Chatzidiamantis ND, Schober R, Karagiannidis GK (2011) Relay selection with outdated channel estimates in Nakagami-m fading. In: Proceedings of 2011 IEEE international conference on communications (ICC). IEEE, pp 1–6Google Scholar
  18. 18.
    Ferdinand NS, da Costa DB, Latva-aho M (2013) Effects of outdated CSI on the secrecy performance of MISO wiretap channels with transmit antenna selection. IEEE Commun Lett 17(5):864–867CrossRefGoogle Scholar
  19. 19.
    Amarasuriya G, Larsson EG, Poor HV (2016) Wireless information and power transfer in multiway massive MIMO relay networks. IEEE Trans Wirel Commun 15(6):3837–3855CrossRefGoogle Scholar
  20. 20.
    Zhao L, Wang X, Zheng K (2016) Downlink hybrid information and energy transfer with massive MIMO. IEEE Trans Wirel Commun 15(2):1309–1322CrossRefGoogle Scholar
  21. 21.
    Shi Q, Xu W, Wu J, Song E, Wang Y (2015) Secure beamforming for MIMO broadcasting with wireless information and power transfer. IEEE Trans Wirel Commun 14(5):2841–2853CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Li Q, Qin J (2016) Beamforming design for OSTBC-based AF-MIMO two-way relay networks with simultaneous wireless information and power transfer. IEEE Trans Veh Commun 65(9):7285–7296CrossRefGoogle Scholar
  23. 23.
    Bao VNQ, Duong TQ, Tellambura C (2013) On the performance of cognitive underlay multihop networks with imperfect channel state information. IEEE Trans Wirel Commun 61(12):4864–4873CrossRefGoogle Scholar
  24. 24.
    Fan L, Lei X, Yang N, Duong TQ, Karagiannidis GK (2017) Secrecy cooperative networks with outdated relay selection over correlated fading channels. IEEE Trans Veh Commun 66(8):7599–7603CrossRefGoogle Scholar
  25. 25.
    Huang Y, Al-Qahtani FS, Duong TQ, Wang J (2015) Secure transmission in MIMO wiretap channels using general-order transmit antenna selection with outdated CSI. IEEE Trans Wirel Commun 63(8):2959–2971CrossRefGoogle Scholar
  26. 26.
    Lee K, Hong J-P (2016) Energy-efficient resource allocation for simultaneous information and energy transfer with imperfect channel estimation. IEEE Trans Veh Commun 65(4):2775– 2780CrossRefGoogle Scholar
  27. 27.
    Benkhelifa F, Salem AS, Alouini M-S (2016) Rate maximization in MIMO decode-and-forward communications with an EH relay and possibly imperfect CSI. IEEE Trans Wirel Commun 64(11):4534–4549CrossRefGoogle Scholar
  28. 28.
    Prasad B, Roy SD, Kundu S (2015) Secondary throughput in underlay cognitive radio network with imperfect CSI and energy harvesting relay. In: Proceedings of 2015 IEEE international conference on advanced networks and telecommunications systems (ANTS). IEEE, pp 1–6Google Scholar
  29. 29.
    Zhang J, Pan G (2016) Outage analysis of wireless-powered relaying MIMO systems with non-linear energy harvesters and imperfect CSI. IEEE Access 4:7046–7053CrossRefGoogle Scholar
  30. 30.
    Yilmaz A, Kucur O (2012) Performance of transmit antenna selection and maximal-ratio combining in dual hop amplify-and-forward relay network over Nakagami-m fading channels. Wirel Pers Commun 3(67):485–503CrossRefGoogle Scholar
  31. 31.
    Mohammadi M, Chalise BK, Suraweera HA, Zhong C, Zheng G, Krikidis I (2016) Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Trans Commun 64 (4):1769–1785CrossRefGoogle Scholar
  32. 32.
    Gradshteyn IS, Ryzhik IM (2014) Table of integrals, series, and products. Academic Press, CambridgezbMATHGoogle Scholar
  33. 33.
    Rajesh R, Sharma V, Viswanath P (2014) Capacity of gaussian channels with energy harvesting and processing cost. IEEE Trans Inf Theory 60(5):2563–2575MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Suraweera HA, Smith PJ, Shafi M (2010) Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Trans Veh Commun 59(4):1811–1822CrossRefGoogle Scholar
  35. 35.
    Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes. Tata McGraw-Hill Education, New YorkGoogle Scholar
  36. 36.
    Ahn KS, Heath JRW (2009) Performance analysis of maximum ratio combining with imperfect channel estimation in the presence of cochannel interferences. IEEE Trans Wirel Commun 8(3):1080–1085CrossRefGoogle Scholar
  37. 37.
    Simon MK, Alouini M-S (2002) Digital communication over generalized fading channels: a unified approach to performance analysis. Wiley, New YorkGoogle Scholar
  38. 38.
    Van Khuong H, Kong H-Y (2006) General expression for eps of a sum of independent exponential random variables. IEEE Commun Lett 10(3):159–161CrossRefGoogle Scholar
  39. 39.
    Tang J, Zhang X (2006) Transmit selection diversity with maximal-ratio combining for multicarrier DS-CDMA wireless networks over Nakagami-m fading channels. IEEE J Sel Areas Commun 24(1):104–112MathSciNetCrossRefGoogle Scholar
  40. 40.
    Bao VNQ, Kong HY (2010) Performance analysis of decode-and-forward relaying with partial relay selection for multihop transmission over Rayleigh fading channels. J Commun Netw 12(5):433–441CrossRefGoogle Scholar
  41. 41.
    Laneman JN, Tse DN, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theory 50(12):3062–3080MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, New YorkzbMATHGoogle Scholar
  43. 43.
    Chen Y, Tellambura C (2004) Distribution functions of selection combiner output in equally correlated Rayleigh, Rician, and Nakagami-m fading channels. IEEE Trans Wirel Commun 52(11):1948–1956CrossRefGoogle Scholar
  44. 44.
    Goldsmith A (2005) Wireless communications. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Radio ElectronicsLe Quy Don Technical UniversityHanoiVietnam
  2. 2.Department of Radio and Communication EngineeringChungbuk National UniversityCheongjuKorea

Personalised recommendations