Mobile Networks and Applications

, Volume 23, Issue 6, pp 1645–1654 | Cite as

Telesurgery Robot Based on 5G Tactile Internet

  • Yiming Miao
  • Yingying Jiang
  • Limei Peng
  • M. Shamim HossainEmail author
  • Ghulam Muhammad


With the development of modern medical technology, the emerging 5G, tactile Internet, robot, and artificial intelligence technology have enabled the interdisciplinary innovations facilitating the development of the surgical treatment technology, and enhancing the treatment efficiency of various diseases. In the medical field, the introduction of robot technology has contributed to the telesurgery. Moreover, the telesurgery robot allocated with the 5G tactile Internet as infrastructure, and AI technology as core competitiveness can promote the audio, visual and tactile perceptions of a doctor during the surgery process and solve the problems of resource scheduling; accordingly, it has become the research hotspot. Therefore, this paper introduces a telesurgery robot based on the 5G tactile Internet and artificial intelligence technology. The architecture, composition, characteristics, and advantages of telesurgery are explained in detail from two aspects, the intelligent tactile feedback, and human-machine interaction data. On this basis, a human-machine interaction optimization scheme during the telesurgery process is presented from four aspects, i.e., Edge-Cloud Integration, network slice, and intelligent edge-cloud. Finally, this paper discusses the open issues of the presented telesurgery system regarding the ultra-high reliability, AI-enabled surgery robot, communication, and security, to provide the reference for the promotion of the telesurgery robot performance.


5G tactile Internet Artificial intelligence Human-machine interaction Robot Telesurgery 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for funding this work through the research group project no. RG-1436-023.


  1. 1.
    Liu J, Zhang Q (2018) Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 6:12825–12837CrossRefGoogle Scholar
  2. 2.
    Chen J, He K, Du R, Xiang Y (2015) Dominating set and network coding-based routing in wireless mesh networks. IEEE Trans Parallel Distrib Syst 26(2):423–433CrossRefGoogle Scholar
  3. 3.
    Zhang Q, Fitzek F (2015) Mission critical IoT communication in 5G. Future Access Enablers of Ubiquitous and Intelligent Infrastructures, 35–41Google Scholar
  4. 4.
    Zhou L, Wu D, Chen J, Dong Z (2018) Greening the smart cities: energy-efficient massive content delivery via D2D communications. IEEE Trans Indus Inf 14(4):1626–1634CrossRefGoogle Scholar
  5. 5.
    Chen M, Li W, Hao Y, Qian Y, Humar I (2018) Edge cognitive computing based smart healthcare system. Futur Gener Comput Syst 86:403–411CrossRefGoogle Scholar
  6. 6.
    He K, Chen J, Du R, Wu Q, Xue G, Zhang X (2016) DeyPoS: deduplicatable dynamic proof of storage for multi-user environments. IEEE Trans Comput 65(12):3631–3645MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Zhou Y, Gu X, Wu D, Chen M, Chan T, Ho S (2018) Statistical study of view preferences for online videos with cross-platform information. IEEE Trans Multimed 20(6):1512–1524CrossRefGoogle Scholar
  8. 8.
    Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433CrossRefGoogle Scholar
  9. 9.
    Tholey G, Desai JP, Castellanos AE (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241(1):102–109Google Scholar
  10. 10.
    Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thoracic Cardiovas Surg 135:196–202CrossRefGoogle Scholar
  11. 11.
    Currie ME (2015) The role of visualization, force feedback, and augmented reality in minimally invasice heart valve repair. The University of Western OntarioGoogle Scholar
  12. 12.
    Chen M, Hao Y, Hu L, Hossain M, Ghoneim A (2018) Edge-CoCaCo: towards joint optimization of computation, caching and communication on edge cloud. IEEE Wirel Commun 25(3): 21–27CrossRefGoogle Scholar
  13. 13.
    Chen J, He K, Yuan Q, Xue G, Du R, Wang L (2017) Batch identification game model for invalid signatures in wireless mobile networks. IEEE Trans Mob Comput 16(6):1530–1543CrossRefGoogle Scholar
  14. 14.
    Zhou L, Wu D, Chen J, Dong Z (2018) When computation hugs intelligence: content-aware data processing for industrial IoT. IEEE Internet of Things Journal 5(3):1657–1666CrossRefGoogle Scholar
  15. 15.
    Xiao S, et al. (2017) Self-evolving trading strategy integrating internet of things and big data. IEEE Internet of Things Journal. CrossRefGoogle Scholar
  16. 16.
    Zhang Y (2016) Grorec: a group-centric intelligent recommender system integrating social, mobile and big data technologies. IEEE Trans Serv Comput 9(5):786–795CrossRefGoogle Scholar
  17. 17.
    Zhang Y, et al. (2017) TempoRec: temporal-topic based recommender for social network services. Mobile Netw Appl 22(6):1182–1191CrossRefGoogle Scholar
  18. 18.
    Tian D, Zhou J, Sheng Z (2017) An adaptive fusion strategy for distributed information estimation over cooperative multi-agent networks. IEEE Trans Inf Theory 63(5):3076–3091MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chen M, Hao Y (2018) Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J Selected Areas Commun 36(3):587–597MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang Q, Liu J, Zhao G (2018) Towards 5G enabled tactile robotic telesurgery, 1–7. arXiv:1803.03586.pdf
  21. 21.
    Zhou L, Wu D, Dong Z, Li X (2017) When collaboration hugs intelligence: content delivery over ultra-dense networks. IEEE Commun Mag 55(12):91–95CrossRefGoogle Scholar
  22. 22.
    Eid M, Cha J, Saddik AE (2011) Admux: an adaptive multiplexer for haptic - audio -visual data communication. IEEE Trans Instrum Meas 60(1):21–31CrossRefGoogle Scholar
  23. 23.
    Cizmeci B, Xu X, Chaudhari R, Bachhuber C, Alt N, Steinbach E (2017) A multiplexing scheme for multimodal teleoperation. ACM Trans Multimed Comput Commun Appl 13(2):1–28. [Online]. Available: CrossRefGoogle Scholar
  24. 24.
    Patel M, Wang J (2010) Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel Commun 17(1):80–88CrossRefGoogle Scholar
  25. 25.
    Hachisu T, Kajimoto H (2017) Vibration feedback latency affects material perception during rod tapping interactions. IEEE Trans Haptics 10(2):288–295CrossRefGoogle Scholar
  26. 26.
    Huo S, Zhou Y, Lei J, Ling N, Hou C (2018) Linear feedback control system based salient object detection. IEEE Trans Multimed 20(6):1350–1364CrossRefGoogle Scholar
  27. 27.
    Zhou Y, Huo S, Xiang W, Hou C, Kung S Semi-supervised salient object detection using a linear feedback control system model. IEEE Trans Cybern, 1–13.
  28. 28.
    Zhou Y, Feng L, Hou C, Kung S (2017) Hyperspectral and multispectral image fusion based on local low rank and coupled spectral unmixing. IEEE Trans Geosci Remote Sens, 50 (10)CrossRefGoogle Scholar
  29. 29.
    Chen M, Qian Y, Hao Y, Li Y, Song J (2018) Computing, caching in 5G networks data-driven architecture and delay analysis. IEEE Wirel Commun 25(1):70–75CrossRefGoogle Scholar
  30. 30.
    Ji W, Frossard P, Chen B, Chen Y (2015) Profit optimization for wireless video broadcasting systems based on polymatroidal analysis. IEEE Trans Multimed 17(12):2310–2327CrossRefGoogle Scholar
  31. 31.
    Ji W, Chen Y, Chen M, Chen B, Chen Y, Kung S (2016) Profit maximization through online advertising scheduling for a wireless video broadcast network. IEEE Trans Mob Comput 15(8):2064–2079CrossRefGoogle Scholar
  32. 32.
    Wang T, Wu D, Zhang J, Chen M, Zhou Y (2016) Measuring and analyzing third-party mobile game App stores in China. IEEE Trans Netw Serv Manag 13(4):793–805CrossRefGoogle Scholar
  33. 33.
    Zhou Y, Wang N, xiang W (2017) Clustering hierarchy protocol in wireless sensor networks using an improved PSO algorithm. IEEE Access PP(99):1–1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Computer Science and EngineeringKyungpook National UniversityDaeguSouth Korea
  3. 3.Department of Software Engineering, College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Computer Engineering, College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations