Mobile Networks and Applications

, Volume 24, Issue 1, pp 208–220 | Cite as

Design of Efficient Key Video Frame Protection Scheme for Multimedia Internet of Things (IoT) in Converged 5G Network

  • Jong-Hyeok Lee
  • Gwang-Soo Hong
  • Young-Woon Lee
  • Chang-Ki Kim
  • Noik Park
  • Byung-Gyu KimEmail author


To guarantee the quality of video data into fast-responding transmission and high resolution output video using cost effective video processing is desirable in many services including Internet of Things (IoT) applications. The goal of this study is to develop a transmission method to improve a quality of service (QoS) to support for various multimedia contents with high quality on 5 generation (5G) convergence network. The main motivation is based on video feature and dependency between frames and blocks in coding structure. First, we investigate the existing methods and analyze them into some classes. From the analyzed result, we propose a priority-based key frame protection method for improving QoS of in 5G convergence network.


Multimedia-centric IoT Quality of service Ultra high quality video 5 generation (5G) convergence network Key frame protection 



This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.B0132-16-1005, Development of Wired-Wireless Converged 5G Core Technologies)


  1. 1.
    Abdel KA, Caramanis C, Heath RW (2012) A cross-layer design for perceptual optimization of H. 264/SVC with unequal error protection. IEEE J Sel Areas Commun 30:1157–1171CrossRefGoogle Scholar
  2. 2.
    Aign S, Fazel K (1995) Temporal and spatial error concealment technique for hierarchical MPEG-2 video codec. In: IEEE international conference on communications, pp 1778–1783Google Scholar
  3. 3.
    Atzori L, Iera A, Morabito G (2010) The internet of things. A survey. Comput Netw 54:2787–2805CrossRefzbMATHGoogle Scholar
  4. 4.
    A.V.C. for Generic Audio-Visual Services, ITU-T Rec. H.264 and ISO/IEC 14496- 10(AVC). ITU-T and ISO/IEC JTC 1 (2003)Google Scholar
  5. 5.
    Azfar M, Fapojuwo AO (2009) A cross-layer framework for efficient streaming of H. 264 video over IEEE 802.11 networks. J Comput Syst Netw Commun 682813:1–13Google Scholar
  6. 6.
    Chen Y, Yu K, Li J, Li S (2004) An error concealment algorithm for entire frame loss in video transmission. In: IEEE picture coding symposium, vol 1, pp 1–4Google Scholar
  7. 7.
    Chien J-T, Li G-L, Chen M-J (2010) Effective error concealment algorithm of whole frame loss for H.264 video coding standard by recursive motion vector refinement. IEEE Trans Consum Electron 56:1689–1695CrossRefGoogle Scholar
  8. 8.
    Cisco (2014) Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018Google Scholar
  9. 9.
    Ericsson (2013) More than 50 billion connected devices. Technical Report (Ericsson) 1Google Scholar
  10. 10.
    Fang T, Chau L (2006) GOP-based channel rate allocation using genetic algorithm for scalable video streaming over error-prone networks. IEEE Trans Image Process 15:1323–1330CrossRefGoogle Scholar
  11. 11.
    Foukalas F, Gazis V, Alonistioti N (2008) Cross-layer design proposals for wireless mobile networks: a survey and taxonomy. IEEE Commun Surv Tutor 10:70–85CrossRefGoogle Scholar
  12. 12.
    Go K (2016) A systematic reallocation and prioritization scheme for error-resilient trans- mission of video packets. Multimedia Tools Appl 76:6755–6783CrossRefGoogle Scholar
  13. 13.
    Goyal VK (2001) Multiple description coding: compression meets the network. IEEE Signal Process Mag 18:74–93CrossRefGoogle Scholar
  14. 14.
    Greengrass J, Evans J, Begen AC (2009) Not all packets are equal part II: the impact of network packet loss on video quality. IEEE Internet Comput 13:74–82CrossRefGoogle Scholar
  15. 15.
    Guang-Tung J, Chen M-J, Chi M-C (2006) Effective error concealment algorithm by boundary information for H. 264 Video Decoder. In: IEEE international conference on multimedia and expo, vol 1, pp 2021–2024Google Scholar
  16. 16.
    Ha H, Yim C (2008) Layer-weighted unequal error protection for scalable video coding ex- tension of H.264/AVC. IEEE Trans Consumer Electron 54:736–744CrossRefGoogle Scholar
  17. 17.
    Jassal A et al (2015) A packet prioritization scheme for 3D-HEVC content transmission over LTE networks. In: International conference on communication workshop (ICCW), pp 1788–793Google Scholar
  18. 18.
    Kim M-H, Park J-H, Na M-S, Jo S-H (2015) Trend of 5G Wireless mobile Communication. Report KICS 1:46–54Google Scholar
  19. 19.
    Kokkonis G, Psannis K, Roumeliotis M, Schonfeld D (2017) Real-time wireless multi- sensory smart surveillance with 3d-hevc streams for internet of things (iot). J Supercomput 73:1044–1062CrossRefGoogle Scholar
  20. 20.
    Ksentini A, Naimi M, Guroui A (2006) Toward an improvement of H. 264 video transmission over IEEE 802.11 e through a cross-layer architecture. IEEE Commun Mag 44:107–114CrossRefGoogle Scholar
  21. 21.
    Lung-Jen W, Wu C-E, Chang C-Y (2015) A cross-layer based bandwidth and queue adaptations for wireless multimedia networks. Computational intelligence, communication systems and networks , pp 227–232Google Scholar
  22. 22.
    MCKinsey (2014) The Internet of Things: sizing up the opportunity. MCKinsey, USAGoogle Scholar
  23. 23.
    M of Korea (2014) Statistics of wireless data traffic. In: Government ReportGoogle Scholar
  24. 24.
    Psannis K, Ishibashi Y (2006) Impact of video coding on delay and jitter in 3G wireless video multicast services. EURASIP J Wirel Commun Netw 24614:1–7CrossRefGoogle Scholar
  25. 25.
    Psannis K, Ishibashi Y (2008) Enhanced H.264/AVC stream switching over varying bandwidth networks. IEICE ELEX J 5:827–832CrossRefGoogle Scholar
  26. 26.
    Shankar S, van der Schaar M (2007) Performance analysis of video transmission over IEEE 802. 11a/e WLANs. IEEE Trans Veh Technol 56:2346–2362CrossRefGoogle Scholar
  27. 27.
    Stockhammer T (2011) Dynamic adaptive streaming over HTTP: standards and design principles. In: ACM multimedia systems conference, pp 133–144Google Scholar
  28. 28.
    Sullivan GJ, Ohm J-R, Han W-J, Wiegand T (2012) Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans Circuits Syst Video Technol 22:1649–1668CrossRefGoogle Scholar
  29. 29.
    van der Schaar M (2005) Cross-layer wireless multimedia transmission: challenges, principles, and new paradigms. IEEE Wirel Commun Mag 12:55–58Google Scholar
  30. 30.
    Wenger S (2003) H.264/AVC over IP. IEEE Trans Circ Syst Video Technol 13:645–656CrossRefGoogle Scholar
  31. 31.
    x265, Multicoreware Inc. (2017)
  32. 32.
    Zhang XJ et al (2008) Robust video transmission over lossy network by exploiting H. 264/AVC data partitioning. In: International conference on broadband communications networks and systems, vol 1, pp 1–8Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jong-Hyeok Lee
    • 1
  • Gwang-Soo Hong
    • 1
  • Young-Woon Lee
    • 2
  • Chang-Ki Kim
    • 3
  • Noik Park
    • 3
  • Byung-Gyu Kim
    • 1
    Email author
  1. 1.Department of IT EngineeringSookmyung Women’s UniversitySeoulRepublic of Korea
  2. 2.Department of Computer EngineeringSunmoon UniversityAsanRepublic of Korea
  3. 3.ETRIDaejeonRepublic of Korea

Personalised recommendations