Mobile Networks and Applications

, Volume 23, Issue 6, pp 1555–1562 | Cite as

Secure Energy Harvesting Communications with Relay Selection over Nakagami-m Fading Channels

  • Cheng Yin
  • Nam-Phong Nguyen
  • Emiliano Garcia-Palacios
  • Xuan Nam Tran
  • Thuong Le-Tien


In this paper, an energy harvesting relay network over Nakagami-m fading is investigated. In the considered system, the power beacon can provide wireless energy for the source and relays which deploy time-switching-based radio frequency energy harvesting technique. Two relay selection schemes, namely partial relay selection and optimal relay selection, are proposed in order to enhance the system performance. In the former, the source only has the channel state information of the first hop, while in the latter it has the full knowledge of the channel state information. The eavesdropper is able to wiretap to the signal transmitted from the source and the relays. The exact closed-form expressions of secrecy outage probability are derived. The results show that optimal relay selection performs better than partial relay selection. With increasing number of relays, the considered system shows better performance. In addition, the energy harvesting duration has a significant effect on the secrecy outage probability.


Physical layer security Energy harvesting Relay networks Nakagami-m Fading 


  1. 1.
    Yuen C, Elkashlan M, Qian Y, Duong TQ, Shu L, Schmidt F (2015) Energy harvesting communications: part 1 [Guest Editorial]. IEEE Commun Mag 53(6):54–55CrossRefGoogle Scholar
  2. 2.
    Yuen C, Elkashlan M, Qian Y, Duong TQ, Shu L, Schmidt F (2015) Energy harvesting communications: part 2 [Guest Editorial]. IEEE Commun Mag 53(6):54–55CrossRefGoogle Scholar
  3. 3.
    Yuen C, Elkashlan M, Qian Y, Duong TQ, Shu L, Schmidt F (2015) Energy harvesting communications: part 3 [Guest Editorial]. IEEE Commun Mag 53(6):54–55CrossRefGoogle Scholar
  4. 4.
    Zhou X, Zhang R, Ho CK (2013) Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans Commun 61(11):4754–4767CrossRefGoogle Scholar
  5. 5.
    Nasir AA, Zhou X, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wireless Commun 12(7):3622–3636CrossRefGoogle Scholar
  6. 6.
    Nasir AA, Zhou X, Durrani S, Kennedy RA (2015) Wireless-powered relays in cooperative communications: time-switching relaying protocols and throughput analysis. IEEE Trans Commun 63(5):1607–1622CrossRefGoogle Scholar
  7. 7.
    Michalopoulos DS, Suraweera HA, Schober R (2015) Relay selection for simultaneous information transmission and wireless energy transfer: a tradeoff perspective. IEEE J Sel Areas Commun 33(8):1–1CrossRefGoogle Scholar
  8. 8.
    Mohammadi M, Chalise BK, Suraweera HA, Zhong C, Zheng G, Krikidis I (2016) Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Trans Commun 64(4):1769–1785CrossRefGoogle Scholar
  9. 9.
    Zhong C, Zheng G, Zhang Z, Karagiannidis G (2015) Optimum wirelessly powered relaying. IEEE Signal Process Lett 22(10):1–1CrossRefGoogle Scholar
  10. 10.
    Nguyen V-D, Duong TQ, Tuan HD, Shin O-S, Poor HV (2017) Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Trans Commun 65(5):2220–2233CrossRefGoogle Scholar
  11. 11.
    Rankov B, Wittneben A (2007) Spectral efficient protocols for half-duplex fading relay channels. IEEE J Sel Areas Commun 25(2):379–389CrossRefGoogle Scholar
  12. 12.
    Bao VNQ, Duong TQ, da Costa DB, Alexandropoulos GC, Nallanathan A (2013) Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Commun Lett 17(3):475–478CrossRefGoogle Scholar
  13. 13.
    Chen G, Tian Z, Gong Y, Chambers J (2014) Decode-and-forward buffer-aided relay selection in cognitive relay networks. IEEE Trans Veh Technol 63(9):4723–4728CrossRefGoogle Scholar
  14. 14.
    Hoang TM, Duong TQ, Vo NS, Kundu C (2017) Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Commun Lett PP(99):1–1Google Scholar
  15. 15.
    Fan L, Lei X, Yang N, Duong TQ, Karagiannidis GK (2017) Secrecy cooperative networks with outdated relay selection over correlated fading channels. IEEE Trans Veh Technol PP(99):1–1Google Scholar
  16. 16.
    Yang M, Guo D, Huang Y, Duong TQ, Zhang B (2016) Secure multiuser scheduling in downlink dual-hop regenerative relay networks over Nakagami- m fading channels. IEEE Trans Wireless Commun 15(12):8009–8024CrossRefGoogle Scholar
  17. 17.
    Fan L, Lei X, Yang N, Duong TQ, Karagiannidis GK (2016) Secure multiple amplify-and-forward relaying with cochannel interference. IEEE J Sel Topics Signal Process 10(8):1494–1505CrossRefGoogle Scholar
  18. 18.
    Duong TQ, Hoang TM, Kundu C, Elkashlan M, Nallanathan A (2016) Optimal power allocation for multiuser secure communication in cooperative relaying networks. IEEE Wireless Commun Lett 5(5):516–519CrossRefGoogle Scholar
  19. 19.
    Huang Y, Wang J, Zhong C, Duong TQ, Karagiannidis GK (2016) Secure transmission in cooperative relaying networks with multiple antennas. IEEE Trans Wireless Commun 15(10):6843–6856CrossRefGoogle Scholar
  20. 20.
    Nguyen NP, Duong TQ, Ngo HQ, Hadzi-Velkov Z, Shu L (2016) Secure 5G wireless communications: a joint relay selection and wireless power transfer approach. IEEE Access 4:3349–3359CrossRefGoogle Scholar
  21. 21.
    Fan L, Yang N, Duong TQ, Elkashlan M, Karagiannidis GK (2016) Exploiting direct links for physical layer security in multiuser multirelay networks. IEEE Trans Wireless Commun 15(6):3856–3867CrossRefGoogle Scholar
  22. 22.
    Hoang TM, Duong TQ, Suraweera HA, Tellambura C, Poor HV (2015) Cooperative beamforming and user selection for improving the security of relay-aided systems. IEEE Trans Wireless Commun 63(12):5039–5051CrossRefGoogle Scholar
  23. 23.
    Rodriguez LJ, Tran NH, Duong TQ, Le-Ngoc T, Elkashlan M, Shetty S (2015) Physical layer security in wireless cooperative relay networks: atate of the art and beyond. IEEE Commun Mag 53(12):32–39CrossRefGoogle Scholar
  24. 24.
    Wang L, Kim KJ, Duong TQ, Elkashlan M, Poor HV (2015) Security enhancement of cooperative single carrier systems. IEEE Trans Inf Forensics Secur 10(1):90–103CrossRefGoogle Scholar
  25. 25.
    Fan L, Lei X, Duong TQ, Elkashlan M, Karagiannidis GK (2014) Secure multiuser communications in multiple amplify-and-forward relay networks. IEEE Trans Commun 62(9):3299–3310CrossRefGoogle Scholar
  26. 26.
    Wang L, Elkashlan M, Huang J, Tran NH, Duong TQ (2014) Secure transmission with optimal power allocation in untrusted relay networks. IEEE Wireless Commun Lett 3(3):289–292CrossRefGoogle Scholar
  27. 27.
    Ng DWK, Lo ES, Schober R (2014) Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans Wireless Commun 13(8):4599–4615CrossRefGoogle Scholar
  28. 28.
    Liu W, Zhou X, Durrani S, Popovski P (2016) Secure communication with a wireless-powered friendly jammer. IEEE Trans Wireless Commun 15(1):401–415CrossRefGoogle Scholar
  29. 29.
    Zhang J, Nguyen N-P, Zhang J, Garcia-Palacios E, Le NP (2016) Impact of primary networks on the performance of energy harvesting cognitive radio networks. IET Commun 10(18):2559–2566CrossRefGoogle Scholar
  30. 30.
    Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products, 7th edn. Academic Press, San DiegozbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Queen’s University BelfastBelfastUK
  2. 2.Le Quy Don Technical UniversityHanoiVietnam
  3. 3.Ho Chi Minh City University of TechnologyHo Chi Minh CityVietnam

Personalised recommendations