Advertisement

Mobile Networks and Applications

, Volume 23, Issue 6, pp 1539–1554 | Cite as

A Mobility Solution for Hazardous Areas Based on 6LoWPAN

  • Azadeh Zamanifar
  • Eslam Nazemi
  • Mojtaba Vahidi-Asl
Article

Abstract

In a critical environment, e.g. in a factory where an employee faces hazardous conditions, monitoring the health status of the employee is important. Thus, continuous connectivity of the employee to the network is the main concern of such networks. In this paper, we have proposed a decentralized approach for mobility management of mobile nodes in hazardous areas like factory. The proposed mobility structure for hazardous areas, called MSHA, organizes static nodes as a tree for an efficient routing, automatic addressing, and handling movement of mobile nodes. MSHA is capable of handling multiple failures of static nodes which disconnect a mobile node from the network. MSHA is highly scalable regarding the number of mobile nodes and the size of the covered monitoring area. The proposed scheme is evaluated based on different factors. The results reveal the superiority of MSHA compared with the previous works. The promising analytical results manifest the performance (about 20%) of MSHA specifically in reducing packet loss and hand-off delay caused by the failure of the static nodes. The performance does not degrade with increasing the number of mobile nodes.

Keywords

Mobile IP-based WSNs hand-off Mobility management Self-healing 

References

  1. 1.
    Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput Commun 30(1415):2826–2841. Network Coverage and Routing Schemes for Wireless Sensor NetworksCrossRefGoogle Scholar
  2. 2.
    Atzori L, Iera A, Morabito G (2010) The internet of things: A survey. Comput Netw 54(15):2787–2805zbMATHCrossRefGoogle Scholar
  3. 3.
    Azharuddin M, Kuila P, Jana PK (2015) Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Comput Electr Eng 41:177–190CrossRefGoogle Scholar
  4. 4.
    Bag G, Raza MT, Kim KH, Yoo SW (2009) Lowmob: Intra-pan mobility support schemes for 6lowpan. Sens (Basel, Switzerland) 9(7):5844–5877.  https://doi.org/10.3390/s90705844 CrossRefGoogle Scholar
  5. 5.
    Banerjee I, Chanak P, Rahaman H, Samanta T (2014) Effective fault detection and routing scheme for wireless sensor networks. Comput Electr Eng 40(2):291–306CrossRefGoogle Scholar
  6. 6.
    Bouaziz M, Rachedi A (2014) A survey on mobility management protocols in wireless sensor networks based on 6lowpan technology. Comput Commun 52:3–15Google Scholar
  7. 7.
    Bui N, Zorzi M (2011) Health care applications: A solution based on the internet of things. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL’11. ACM, New York, pp 131:1–131:5Google Scholar
  8. 8.
    Caldeira J, Rodrigues J, Lorenz P (2013) Intra-mobility support solutions for healthcare wireless sensor networks handover issues. IEEE Sens J 13(11):4339–4348.  https://doi.org/10.1109/JSEN.2013.2267729 CrossRefGoogle Scholar
  9. 9.
    Callaway E, Gorday P, Hester L, Gutierrez JA, Naeve M, Heile B, Bahl V (2002) Home networking with ieee 802.15.4: A developing standard for low-rate wireless personal area networks. Comm Mag 40 (8):70–77CrossRefGoogle Scholar
  10. 10.
    Chowdhury AH, Ikram M, Cha HS, Redwan H, Shams S, Kim KH, Yoo SW (2009) Route-over vs mesh-under routing in 6lowpan. In: Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing: Connecting the world wirelessly. ACM, New York, pp 1208–1212Google Scholar
  11. 11.
    Dohr A, Modre-Opsrian R, Drobics M, Hayn D, Schreier G (2010) The internet of things for ambient assisted living. In: 2010 Seventh International Conference on Information Technology: New Generations (ITNG), pp 804–809.  https://doi.org/10.1109/ITNG.2010.104
  12. 12.
    Dunkels A, Gronvall B, Voigt T (2004) Contiki - a lightweight and flexible operating system for tiny networked sensors. In: 2004. 29th Annual IEEE International Conference on Local Computer Networks. IEEE, USA, pp 455–462.  https://doi.org/10.1109/LCN.2004.38
  13. 13.
    Eriksson J, Finne N, Tsiftes N, Voigt T, Gielda M, Gielda P (2013) Demo abstract: Emulink-heterogeneous sensor network simulation in cooja. In: 10th European Conference on Wireless Sensor Networks, vol 13. EWSNGoogle Scholar
  14. 14.
    Eriksson J, Österlind F, Finne N, Tsiftes N, Dunkels A, Voigt T, Sauter R, Marrón PJ (2009) Cooja/mspsim: Interoperability testing for wireless sensor networks. In: Proceedings of the 2Nd International Conference on Simulation Tools and Techniques, Simutools ’09, pp 27:1–27:7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ICST, BrusselsGoogle Scholar
  15. 15.
    Gupta G, Younis M (2003) Fault-tolerant clustering of wireless sensor networks. In: Wireless Communications and Networking, 2003. WCNC 2003, vol 3. IEEE, USA, pp 1579–1584.  https://doi.org/10.1109/WCNC.2003.1200622
  16. 16.
    Ha M, Kim D, Kim SH, Hong S (2010) Inter-mario: A fast and seamless mobility protocol to support inter-pan handover in 6lowpan. In: Global Telecommunications Conference (GLOBECOM 2010). IEEE, pp 1–6.  https://doi.org/10.1109/GLOCOM.2010.5683658
  17. 17.
    Hong S, Kim D, Ha M, Bae S, Park SJ, Jung W, Kim J (2010) Snail: an ip-based wireless sensor network approach to the internet of things. Wireless Communications. IEEE 17(6):34–42.  https://doi.org/10.1109/MWC.2010.5675776 Google Scholar
  18. 18.
    Hoyland A, Rausand M (2004) System reliability theory: models, statistical methods, and applications. Wiley-Interscience, NJzbMATHGoogle Scholar
  19. 19.
    Jabir A, Subramaniam S, Ahmad Z, Hamid N (2012) A cluster-based proxy mobile ipv6 for ip-wsns. EURASIP J Wirel Commun Netw 2012(1):173.  https://doi.org/10.1186/1687-1499-2012-173 CrossRefGoogle Scholar
  20. 20.
    Khalil N, Abid M, Benhaddou D, Gerndt M (2014) Wireless sensors networks for internet of things. In: 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp 1–6.  https://doi.org/10.1109/ISSNIP.2014.6827681
  21. 21.
    Kim J, Haw R, Cho EJ, Hong CS, Lee S (2012) A 6lowpan sensor node mobility scheme based on proxy mobile ipv6. IEEE Trans Mob Comput 11(12):2060–2072CrossRefGoogle Scholar
  22. 22.
    Kumara S, Cui L, Zhang J (2011) Sensors, networks and internet of things: Research challenges in health care. In: Proceedings of the 8th International Workshop on Information Integration on the Web: In Conjunction with WWW 2011, IIWeb ’11. ACM, New York, pp 2:1–2:4Google Scholar
  23. 23.
    Lai Y, Chen H (2007) Energy-efficient fault-tolerant mechanism for clustered wireless sensor networks. In: 2007. ICCCN 2007. Proceedings of 16th International Conference on Computer Communications and Networks. IEEE, USA, pp 272–277.  https://doi.org/10.1109/ICCCN.2007.4317831
  24. 24.
    Lee JJ, Krishnamachari B, Kuo CCJ (2008) Aging analysis in large-scale wireless sensor networks. Ad Hoc Netw 6(7):1117–1133CrossRefGoogle Scholar
  25. 25.
    Mainetti L, Patrono L, Vilei A (2011) Evolution of wireless sensor networks towards the internet of things: A survey. In: 2011 19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp 1–6Google Scholar
  26. 26.
    Miorandi D, Sicari S, Pellegrini FD, Chlamtac I (2012) Internet of things: Vision, applications and research challenges. Ad Hoc Netw 10(7):1497–1516CrossRefGoogle Scholar
  27. 27.
    Misra S, Jain A (2011) Policy controlled self-configuration in unattended wireless sensor networks. J Netw Comput Appl 34(5):1530–1544. Dependable Multimedia Communications: Systems, Services, and ApplicationsCrossRefGoogle Scholar
  28. 28.
    Montavont J, Roth D, No T (2014) Mobile {IPv6} in internet of things: Analysis, experimentations and optimizations. Ad Hoc Netw 14:15–25CrossRefGoogle Scholar
  29. 29.
    Mun Y, Lee HK (2005) Mobility support for ipv6. In: Understanding IPv6. Springer, USA, pp 173–220Google Scholar
  30. 30.
    Osterlind F, Dunkels A, Eriksson J, Finne N, Voigt T (2006) Cross-level sensor network simulation with cooja. In: Proceedings 2006 31st IEEE Conference on Local Computer Networks. IEEE, USA, pp 641–648.  https://doi.org/10.1109/LCN.2006.322172
  31. 31.
    Roussel K, Song YQ, Zendra O (2016) Using cooja for wsn simulations: Some new uses and limits. In: EWSN 2016—NextMote Workshop. Junction Publishing, pp 319–324Google Scholar
  32. 32.
    Sehgal A (2013) Using the contiki cooja simulator. Comput Sci Jacobs Univ Bremen Campus Ring 1(28):759Google Scholar
  33. 33.
    Shahamabadi MS, Ali BBM, Varahram P, Jara AJ (2013) A network mobility solution based on 6lowpan hospital wireless sensor network (nemo-hwsn). In: Proceedings of the 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS ’13. IEEE Computer Society, Washington, pp 433–438Google Scholar
  34. 34.
    Shang X, Zhang R, Chu F (2013) An inter-pan mobility support scheme for ip-based wireless sensor networks and its applications. Inf Technol Manag 14(3):183–192CrossRefGoogle Scholar
  35. 35.
    Shelby Z, Bormann C (2010) 6LoWPAN: The wireless embedded internet. Wiley Publishing, HobokenGoogle Scholar
  36. 36.
    Silva R, Silva JS, Boavida F (2014) Mobility in wireless sensor networks, survey and proposal. Comput Commun 52(1):1–20CrossRefGoogle Scholar
  37. 37.
    Wang X, Le D, Cheng H, Xie C (2014) All-ip wireless sensor networks for real-time patient monitoring. J Biomed Inform 52:406–417.  https://doi.org/10.1016/j.jbi.2014.08.002. Special Section: Methods in Clinical Research InformaticsCrossRefGoogle Scholar
  38. 38.
    Wang X, Qian H (2013) Research on all-ip communication between wireless sensor networks and {IPv6} networks. Comput Stand Interfaces 35(4):403–414CrossRefGoogle Scholar
  39. 39.
    Wang X, Zhong S, Zhou R (2012) A mobility support scheme for 6lowpan. Comput Commun 35 (3):392–404CrossRefGoogle Scholar
  40. 40.
    Xiaonan W, Hongbin C (2016) Research on seamless mobility handover for 6lowpan wireless sensor networks. Telecommun Syst 61(1):141–157CrossRefGoogle Scholar
  41. 41.
    Xu LD, He W, Li S (2014) Internet of things in industries: A survey. IEEE Trans Indust Inform 10 (4):2233–2243.  https://doi.org/10.1109/TII.2014.2300753 CrossRefGoogle Scholar
  42. 42.
    Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330CrossRefGoogle Scholar
  43. 43.
    Zamanifar A, Nazemi E, Vahidi-Asl M (2016) Dmp-iot: A distributed movement prediction scheme for iot health-care applications. Computers & Electrical EngineeringGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Azadeh Zamanifar
    • 1
  • Eslam Nazemi
    • 1
  • Mojtaba Vahidi-Asl
    • 1
  1. 1.Software Engineering Department, Computer Science and Engineering FacultyShahid Beheshti UniversityTehranIran

Personalised recommendations