Mobile Networks and Applications

, Volume 22, Issue 2, pp 305–317 | Cite as

Context Dissemination for Dynamic Urban-Scale Applications

  • Alistair Morris
  • Constantinos Patsakis
  • Mélanie Bouroche
  • Vinny Cahill
Article
  • 94 Downloads

Abstract

Realising the “smart city” vision requires applications that can efficiently disseminate context among millions of potentially mobile nodes. Numerous context dissemination algorithms exist based on flooding-, gossip- and overlay-based approaches. However, due to their message transmission (flooding, gossip) or control (overlay) overhead, they cannot support the amount of mobile nodes envisaged in urban-scale scenarios. This paper describes Adaptive Context Tries (ACT), a decentralised context dissemination middleware that balances message transmission and control overhead to support urban-scale context-aware applications. ACT achieves scalability using a dynamically constructed virtual overlay, structured as a retrieval tree (trie) on node identifiers (IDs), avoiding continuous overlay rebuilds due to mobility or nodes changes by removing the need for subscriptions. Through formal analysis and extensive large-scale simulations we show that unlike existing context dissemination algorithms ACT can handle dynamic context requirements in urban-scale scenarios.

Keywords

Smart city Context-aware Urban-scale Tries Scalability Context dissemination Taxis Optimal 

References

  1. 1.
    Ali S, Rizzo G, Marsan MA, Mancuso V (2014) Impact of mobility on the performance of context-aware applications using floating content. In: Context-aware systems and applications. Springer, pp 198–208Google Scholar
  2. 2.
    Arnaboldi V, Conti M, Delmastro F (2014) Cameo: a novel context-aware middleware for opportunistic mobile social networks. Pervasive Mob Comput 11:148–167CrossRefGoogle Scholar
  3. 3.
    Augustine J, Pandurangan G, Robinson P, Roche S, Upfal E (2015) Enabling robust and efficient distributed computation in dynamic peer-to-peer networks. In: IEEE 56th annual symposium on foundations of computer science (FOCS), 2015. IEEE, pp 350–369Google Scholar
  4. 4.
    Banno R, Takeuchi S, Takemoto M, Kawano T, Kambayashi T, Matsuo M (2014) A distributed topic-based pub/sub method for exhaust data streams towards scalable event-driven systems. In: Computer software and applications conference (COMPSAC), 2014 IEEE 38th annual, IEEE, pp 311–320Google Scholar
  5. 5.
    Boldrini C, Conti M, Passarella A (2008) Exploiting user’s social relations to forward data in opportunistic networks: the hibop solution. Pervasive Mob Comput 4(5):633–657CrossRefGoogle Scholar
  6. 6.
    Calabrese F, Ferrari L, Blondel VD (2015) Urban sensing using mobile phone network data: a survey of research. ACM Comput Surv (CSUR) 47(2):25Google Scholar
  7. 7.
    Casanova H, Legrand A, Quinson M (2008) Simgrid: a generic framework for large-scale distributed experiments. In: Tenth international conference on computer modeling and simulation, 2008. UKSIM 2008, IEEE, pp 126–131Google Scholar
  8. 8.
    Chen P, Sen S, Pung HK, Wong WC (2013) Mpsg: a generic context management framework in mobile spaces. In: Proceedings of the 8th international conference on body area networks. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 112–115Google Scholar
  9. 9.
    Chen P, Sen S, Pung HK, Xue W, Wong WC (2012) A context management framework for context-aware applications in mobile spaces. International Journal of Pervasive Computing and Communications 8 (2):185–210CrossRefGoogle Scholar
  10. 10.
    Ercoli S, Bertini M, Del Bimbo A (2015) Compact hash codes and data structures for efficient mobile visual search. In: IEEE international conference on multimedia & expo workshops (ICMEW), 2015, IEEE, pp 1–6Google Scholar
  11. 11.
    Fall K (2003) A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications. ACM, pp 27–34Google Scholar
  12. 12.
    Fanelli M, Foschini L, Corradi A, Boukerche A (2014) Self-adaptive context data management in large-scale mobile systems. IEEE Trans Comput 63(10):2549–2562MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fredkin E (1960) Trie memory. Commun ACM 3(9):490–499CrossRefGoogle Scholar
  14. 14.
    Gu T, Pung HK, Zhang DQ (2005) A service-oriented middleware for building context-aware services. J Netw Comput Appl 28(1):1–18CrossRefGoogle Scholar
  15. 15.
    Hasan S, Curry E (2015) Thingsonomy: tackling variety in internet of things events. IEEE Internet Computing 19(2):10–18CrossRefGoogle Scholar
  16. 16.
    Hoepman J-H (2014) Privacy design strategies. In: ICT systems security and privacy protection. Springer, pp 446–459Google Scholar
  17. 17.
    Hsu B-JP, Ottaviano G (2013) Space-efficient data structures for top-k completion. In: Proceedings of the 22nd international conference on world wide web. International World Wide Web Conferences Steering Committee, pp 583–594Google Scholar
  18. 18.
    Hu R, Sopena J, Arantes L, Sens P, Demeure I (2013) Efficient dissemination algorithm for scale-free topologies. In: 42nd international conference on parallel processing (ICPP), 2013, IEEE, pp 310–319Google Scholar
  19. 19.
    Kermarrec A-M, Triantafillou P (2013) Xl peer-to-peer pub/sub systems. ACM Comput Surv (CSUR) 46 (2):16CrossRefGoogle Scholar
  20. 20.
    Lee U, Zhou B, Gerla M, Magistretti E, Bellavista P, Corradi A (2006) Mobeyes: smart mobs for urban monitoring with a vehicular sensor network. IEEE Wirel Commun 13(5):52–57CrossRefGoogle Scholar
  21. 21.
    Lopes J, Gusmão M, Duarte C, Davet P, Souza R, Pernas A, Yamin A, Geyer C (2014) Toward a distributed architecture for context awareness in ubiquitous computing. J Appl Commun Res 3(1):19–33Google Scholar
  22. 22.
    Mannweiler C, Simoes J, Moltchanov B (2010) Context-aware smart environments enabling new business models and services. In: Kaleidoscope: beyond the internet? – innovations for future networks and services, 2010 ITU-t. IEEE. pp 1–7Google Scholar
  23. 23.
    Manzoor A, Truong H-L, Dustdar S (2014) Quality of context: models and applications for context-aware systems in pervasive environments. Knowl Eng Rev 29(02):154–170CrossRefGoogle Scholar
  24. 24.
    Medvedev A, Zaslavsky A, Khoruzhnikov S, Grudinin V (2015) Reporting road problems in smart cities using openiot framework. In: Interoperability and open-source solutions for the internet of things. Springer, pp 169–182Google Scholar
  25. 25.
    Miettinen M, Heuser S, Kronz W, Sadeghi A-R, Asokan N (2014) Conxsense: automated context classification for context-aware access control. In: Proceedings of the 9th ACM symposium on information, computer and communications security. ACM, pp 293–304Google Scholar
  26. 26.
    Moreno MV, Zamora MA, Skarmeta AF (2014) User-centric smart buildings for energy sustainable smart cities. Transactions on Emerging Telecommunications Technologies 25(1):41–55CrossRefGoogle Scholar
  27. 27.
    Morris A, Bouroche M, Cahill V (2014) Urban scale dissemination in mobile pervasive computing environments. PECCS 2014:18Google Scholar
  28. 28.
    Morris A, Patsakis C, Cahill V, Bouroche M (2015) Snapcab: urban scale context-aware smart transport using adaptive context tries. In: 4th international conference on context-aware systems and applications. SpringerGoogle Scholar
  29. 29.
    Morris A, Patsakis C, Dragone M, Manzoor A, Cahill V, Bouroche M (2015) Urban scale context dissemination in the internet of things: challenge accepted. In: 9th international conference on next generation mobile applications, services and technologies, 2015. IEEE, pp 84–89Google Scholar
  30. 30.
    Morris A, Patsakis C, Dragone M, Manzoor A, Cahill V, Bouroche M (2015) Urban scale context dissemination in the internet of things: challenge accepted. In: 9Th international conference on next generation mobile applications, services and technologies. IEEEGoogle Scholar
  31. 31.
    Musolesi M, Mascolo C (2009) Car: context-aware adaptive routing for delay-tolerant mobile networks. IEEE Trans Mob Comput 8(2):246–260CrossRefGoogle Scholar
  32. 32.
    Nabeel M, Appel S, Bertino E, Buchmann A (2013) Privacy preserving context aware publish subscribe systems. In: Network and system security. Springer, pp 465–478Google Scholar
  33. 33.
    Perera C, Zaslavsky A, Christen P, Compton M, Georgakopoulos D (2013) Context-aware sensor search, selection and ranking model for internet of things middleware. In: IEEE 14th international conference on mobile data management (MDM), 2013, vol 1. IEEE, pp 314–322Google Scholar
  34. 34.
    Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutorials 16(1):414–454CrossRefGoogle Scholar
  35. 35.
    Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Sensing as a service model for smart cities supported by internet of things. Transactions on Emerging Telecommunications Technologies 25(1):81–93CrossRefGoogle Scholar
  36. 36.
    Ramparany F, Galan Marquez F, Soriano J, Elsaleh T (2014) Handling smart environment devices, data and services at the semantic level with the fi-ware core platform. In: IEEE international conference on big data (big data), 2014. IEEE, pp 14–20Google Scholar
  37. 37.
    Silva AP, Burleigh S, Hirata CM, Obraczka K (2015) A survey on congestion control for delay and disruption tolerant networks. Ad Hoc Netw 25:480–494CrossRefGoogle Scholar
  38. 38.
    Stingl D, Richerzhagen B, Zollner F, Gross C, Steinmetz R (2013) Peerfactsim. kom: take it back to the streets. In: International conference on high performance computing and simulation (HPCS), 2013. IEEE, pp 80–86Google Scholar
  39. 39.
    Villaverde BC, De Paz Alberola R, Jara AJ, Fedor S, Das SK, Pesch D (2014) Service discovery protocols for constrained machine-to-machine communications. IEEE Commun Surv Tutorials 16(1):41–60CrossRefGoogle Scholar
  40. 40.
    Woodruff DP, Zhang Q (2013) When distributed computation is communication expensive. In: Distributed computing. Springer, pp 16–30Google Scholar
  41. 41.
    Zhang L, Zhang Y, Tang J, Lu K, Tian Q (2013) Binary code ranking with weighted hamming distance. In: IEEE conference on computer vision and pattern recognition (CVPR), 2013. IEEE, pp 1586–1593Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Alistair Morris
    • 1
  • Constantinos Patsakis
    • 2
  • Mélanie Bouroche
    • 1
  • Vinny Cahill
    • 1
  1. 1.Distributed Systems Group, School of Computer Science and StatisticsTrinity CollegeDublinIreland
  2. 2.Department of InformaticsUniversity of PiraeusPireasGreece

Personalised recommendations