Advertisement

Mobile Networks and Applications

, Volume 24, Issue 2, pp 700–711 | Cite as

Energy Saving in Smart City Wireless Backbone Network for Environment Sensors

  • Domingo MarreroEmail author
  • Elsa Macías
  • Álvaro Suárez
  • José Aurelio Santana
  • Vicente Mena
Article

Abstract

Daily human actions cause positive or negative side effects on Environment. A city is a kind of Environment that supports a big amount of people daily causing side effects on it. Urban wastes and car driving are typical actions that pollute the city. Smart city treats to reinvent cities making them a good living environment. Wireless Sensor Networks are the base technology of Smart cities. These networks are in charge to sense physical variables that could feedback the behaviour of humans. These sensors usually send data to a cloud server for applying big data technology in order to discover behaviour patterns of humans. In this way a smart city could take corrective actions in order to reduce, for example, polluted air in a critical zone. But the sensors and the backbone network that send data to that server also consume electric power. Usually the wireless backbone elements are always turned on, which could incur a high pattern of electric energy consumption. In this paper we present a new mechanism for energy saving in the wireless backbone network. Our energy saving mechanism also allows us to produce a portable wireless backbone network that could be used in several places.

Keywords

Energy saving Wireless Mesh Grid Smart City Mesh access point Sensors 

References

  1. 1.
    Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng ML (2015) A survey of wireless sensor network based air pollution monitoring systems. Sensors 15:31392–31427. doi: 10.3390/s151229859 CrossRefGoogle Scholar
  2. 2.
    Seidl M, Da G, Ausset P, Haenn S, Géhin E, Moulin L (2016) Evaluating exposure of pedestrians to airborne contaminants associated with non-potable water use for pavement cleaning. Environ Sci Pollut Res 23(7):6091–6101. doi: 10.1007/s11356-015-5062-x CrossRefGoogle Scholar
  3. 3.
    Ericsson (2015) Technology for good. Ericsson sustainability and corporate responsibility report. https://www.esmartcity.es/images/ESMARTCITY/media/content/. 2015-corporate-responsibility-and-sustainability-report.pdf. Accessed 15 Jul 2016
  4. 4.
    Greengard S (2015) The internet of things. The MIT Press Essential Knowledge seriesGoogle Scholar
  5. 5.
    He Y, Stojmenovic I, Liu Y, Gu Y (2014) Smart city. Int J Distrib Sens N 2014:867593. doi: 10.1155/2014/867593 CrossRefGoogle Scholar
  6. 6.
    Escolar S, Carretero J, Marinescu MC, Chessa S (2014) Estimating energy savings in smart street lighting by using an adaptive control system. Int J Distrib Sens N 2014:971587. doi: 10.1155/2014/971587 CrossRefGoogle Scholar
  7. 7.
    Cellucci L, Burattini C, Drakou D, Gugliermetti F, Bisegna F, Vollaro AL, Salata F, Golasi I (2015) Urban lighting project for a small town: comparing citizens and authority benefits. Sustainability 7(10):14230–14244. doi: 10.3390/su71014230 CrossRefGoogle Scholar
  8. 8.
    Rodríguez J, Martínez JF, Castillejo P, Diego R (2013) SMArc: a proposal for a smart, semantic middleware architecture focused on smart city energy management. Int J Distrib Sens N 2013:560418. doi: 10.1155/2013/560418 CrossRefGoogle Scholar
  9. 9.
    Li Q, Yang P (2014) eCOTS: efficient and cooperative task sharing for large-scale smart city sensing application. Int J Distrib Sens N 2014:463876. doi: 10.1155/2014/463876 CrossRefGoogle Scholar
  10. 10.
    Ha RH, Ho PH, Shen XS (2010) Optimal sleep scheduling with transmission range assignment in application-specific wireless sensor networks. International Journal of Sensor Networks 1:1–17. doi: 10.1504/IJSNET.2006.010836 Google Scholar
  11. 11.
    Olwal TO, Van Wyk BJ, Ntlatlapa N, Djouani K, Siarry P, Hamam Y (2010) Dynamic power control for wireless backbone mesh networks: a survey. Network Protocols and Algorithms 2(1):1–44. doi: 10.5296/npa.v2i1.336 CrossRefGoogle Scholar
  12. 12.
    Lanza J, Sánchez L, Muñoz L, Galache JA, Sotres P, Santana JR, Gutiérrez V (2015) Large-scale mobile sensing enabled internet-of-things testbed for smart city services. Int J Distrib Sens N. doi: 10.1155/2015/785061 Google Scholar
  13. 13.
    Shi J, Wei X, Zhu W (2016) An efficient algorithm for energy management in wireless sensor networks via employing multiple mobile sinks. Int J Distrib Sens N 2016:3179587 doi: 10.1155/2016/3179587
  14. 14.
    Ebadi S (2012) A multihop clustering algorithm for energy saving in wireless sensor networks. ISRN Sensor Networks 2012(2012):817895. doi: 10.5402/2012/817895 Google Scholar
  15. 15.
    Shaikh FK, Zeadally S (2016) Energy harvesting in wireless sensor networks: a comprehensive review. Renew Sust Energ Rev 55:1041–1054. doi: 10.1016/j.rser.2015.11.010 CrossRefGoogle Scholar
  16. 16.
    Kim HY (2016) An energy-efficient load balancing scheme to extend lifetime in wireless sensor networks. Cluster Comput 19(1):279–283. doi: 10.1007/s10586-015-0526-9 CrossRefGoogle Scholar
  17. 17.
    Rani S, Ahmed SH (2016) Multi-hop routing in wireless sensor networks: An overview, taxonomy, and research challenges. Springer Singapore. ISBN: 978–981–287-729-1 (Print) 978–981–287-730-7 (Online), 2016, doi: 10.1007/978-981-287-730-7
  18. 18.
    Alotaibi E, Mukherjee B (2012) A survey on routing algorithms for wireless ad-hoc and mesh networks. Comput Netw 56(2):940–965. doi: 10.1016/j.comnet.2011.10.011 CrossRefGoogle Scholar
  19. 19.
    Vijayakumar KP, Ganeshkumar P, Anandaraj M (2012) Review on routing algorithms in wireless mesh networks. International Journal of Computer Science and Telecommunications 3(5):87–92Google Scholar
  20. 20.
    Ahmeda SS, Farhan RK (2014) Routing protocols for wireless mesh networks: performance study. In: International congress on computer, electronics, electrical, and communication engineering. ICCEECE 2014, p 142–148 doi: 10.7763/IPCSIT.2014.V59.26
  21. 21.
    Data Synergy (2016) Wake on LAN. www.datasynergy.co.uk/products/wakeman/pdfs/Wake-on-LANExplained.pdf. Accessed 15 Jul 2016
  22. 22.
    Linksys official support (2016) Wireless-G BroadBand router. http://www.linksys.com/us/support-product?pid=01t80000003KXPxAAO. Accessed 15 Jul 2016
  23. 23.
    Unleash your router (2016). http://www.dd-wrt.com/site/index. Accessed 15 Jul 2016
  24. 24.
    OCU (2016). Consumption in standby. http://www.ocu.org/vivienda-y-energia/nc/calculadora/consumo-en-stand-by. Accessed 15 Jul 2016
  25. 25.
    Linksys official support (2016). Linksys WRT160NL Wireless-N broadband router with storage link. http://www.linksys.com/us/support-product?pid=01t80000003K7eJAASXX 19. Accessed 15 Jul 2016
  26. 26.
    Jain K, Padhye J, Padmanabhan VN, Qiu L (2005) Impact of interference on multi-hop wireless network performance. Wirel Netw 11(4):471–487. doi: 10.1007/s11276-005-1769-9 CrossRefGoogle Scholar
  27. 27.
    Barcelona WiFi map (2016). http://w152.bcn.cat/PlanolBCN/es/act/wifi-bcn-P001/. Accessed 15 Jul 2016

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Domingo Marrero
    • 1
    • 2
    Email author
  • Elsa Macías
    • 1
    • 2
  • Álvaro Suárez
    • 1
    • 2
  • José Aurelio Santana
    • 2
    • 3
  • Vicente Mena
    • 2
    • 3
  1. 1.Departamento de Ingeniería TelemáticaUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Instituto Universitario de Ciencias y Tecnologías Cibernéticas (IUCTC)Las Palmas de Gran CanariaSpain
  3. 3.Departamento de Señales y ComunicacionesUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations