Mobile Networks and Applications

, Volume 24, Issue 2, pp 667–677 | Cite as

Energy Savings Consumption on Public Wireless Networks by SDN Management

  • Jose M. JimenezEmail author
  • Oscar Romero
  • Jaime Lloret
  • Juan R. Diaz


In order to use the energy more efficiently, network algorithms and protocols must incorporate in their decision mechanisms some functions focused on saving energy. In this paper we have studied different features and parameters of wireless networks to establish their relationship with the power consumption. First, we have analyzed the variation of power consumption of access points (APs) in function of the antenna transmission power. Second, we have collected user information from real public wireless network to determine the real requirements of network resources in real time basis. Based on this information, a new extension for Openflow protocol over Software-Defined Networking (SDN) networks will be proposed to manage the wireless network, with the aim to keep the optimal network performance with minimal power consumption. This extension introduces new Openflow messages and a new function to be incorporated in SDN controllers and Openflow enabled devices. The proposal will be validated by appropriated simulations based on real scenarios: a shopping center and a municipal wireless network.


Energy consumption Energy efficiency OpenFlow Software-defined network Green networks Municipal public wireless 



This work has been supported by the “Ministerio de Economía y Competitividad”, through the “Convocatoria 2014. Proyectos I + D - Programa Estatal de Investigación Científica y Técnica de Excelencia” in the “Subprograma Estatal de Generación de Conocimiento”, Project TIN2014-57991-C3-1-P and the “Programa para la Formación de Personal Investigador – (FPI-2015-S2-884)” by the “UniversitatPolitècnica de València”.


  1. 1.
    Khoa Nguyen K, Jaumard B (2009) Routing engine architecture for next generation routers: evolutional trends. Network Protocols and Algorithms 1(1):62–85. doi: 10.5296/npa.v1i1.151
  2. 2.
    Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 White Paper (2016). Available at: Accessed 3 Nov 2016
  3. 3.
    Recommended Power Management Settings (2016). Available at Accessed 3 Nov 2016
  4. 4.
    WWF International website (2016). Available at Accessed 3 Nov 2016
  5. 5.
    ENERGY STAR (2016). The simple choice for energy efficiency. Available at 3 Nov 2016
  6. 6.
    Definition WHAT IS SDN? (2016). Available at Accessed 3 Nov 2016
  7. 7.
    OpenFlow (2016). Available at: Accessed 3 Nov 2016
  8. 8.
    McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74CrossRefGoogle Scholar
  9. 9.
    Dely P, Kassler A, Bayer N (2011) OpenFlow for wireless mesh networks. In 2011 proceedings of 20th international conference on computer communications and networks (ICCCN), July 31-Aug 4 2011, pp 1–6. doi: 10.1109/ICCCN.2011.6006100
  10. 10.
    Guidance document_Lot 26_networked standby_clean FIN.pdf. Available at Accessed 3 Nov 2016
  11. 11.
    Yang H, Zhang J, Zhao Y, Ji Y, Han J, Lin Y, Qiu YL (2014) Time-aware software defined networking for OpenFlow-based datacenter optical networks. Netw Protocol Algorithm 6(4):77–91CrossRefGoogle Scholar
  12. 12.
    Jimenez JM, Romero O, Rego A, Dilendra A, Lloret J (2015) Study of multimedia delivery over software defined networks. Netw Protocol Algorithm 7(4):37–62CrossRefGoogle Scholar
  13. 13.
    Jimenez JM, Romero O, Rego A, Dilendra A, Lloret J (2016) Performance study of a software defined network emulator. The twelfth advanced international conference on telecommunications (AICT 2016), May 22–26, 2016, Valencia, SpainGoogle Scholar
  14. 14.
    Mininet An Instant Virtual Network on your Laptop (or other PC) (2016). Available at Accessed 3 Nov 2016
  15. 15.
    Nedevschi S, Popa L, Iannaccone G, Ratnasamy S, Wetherall D (2008) Reducing network energy consumption via sleeping and rate-adaptation. Proceeding NSDI’08 proceedings of the 5th USENIX symposium on networked systems design and implementation, April 16–18, 2008, San Francisco (USA), pp 323–336Google Scholar
  16. 16.
    Feeney LM, Nilsson M (2001) Investigating the energy consumption of a wireless network interface in an Ad Hoc networking environment. In: proceedings of the twentieth annual joint conference of the IEEE computer and communications societies, INFOCOM 2001, vol 3, Anchorage, Alaska, April 22–26, pp. 1548–1557. IEEE (2001)Google Scholar
  17. 17.
    Andrade-Morelli S, Ruiz-Sanchez E, Granell E, Lloret J (2012) Energy consumption of wireless network access points. In second international conference, Gree Nets 2012, Gandia, Spain, October 25–26, 2012, pp 81–91. doi: 10.1007/978–3–642-37977-2_8
  18. 18.
    Chen T, Yang Y, Zhang H, Haesik K, Horneman K (2011) Network energy saving technologies for green wireless access networks. IEEE Wirel Commun 18(5):30–38CrossRefGoogle Scholar
  19. 19.
    Tapia A, Maitland C, Stone M (2006) Making IT work for municipalities: Buildingmunicipal wireless networks. Gov Inf Q 23(3):359–380CrossRefGoogle Scholar
  20. 20.
    van Drunen R, Koolhaas J, Schuurmans H, Vijn M (2003) Building a wireless community network in the netherland. In: USENIX 2003/Freenix Annual technical conference proceedings, San Antonio, Texas, USA, June 9–14, pp 219–230Google Scholar
  21. 21.
    Vu TH, Nam PN, Thanh T, Hung LT, Van LA, Linh ND, Thien TD, Thanh NH (2012) Power aware OpenFlow switch extension for energy saving in data centers. In international conference on advanced technologies for communications, ATC 2012, IEEE, Hanoi, Vietnam, 10–12 Oct 2012, pp 309–313. doi: 10.1109/ATC.2012.6404282
  22. 22.
    Kaup F, Melnikowitsch S, Hausheer D (2014) Measuring and modeling the power consumption of OpenFlow switches. In IEEE international conference on network and service management (CNSM), Rio de Janeiro, Brazil, 17–21 Nov 2014, pp 181–186Google Scholar
  23. 23.
    DATA SHEET. ARUBA 103 SERIES ACCESS POINTS (2016). Available at: Accessed 3 Nov 2016
  24. 24.
    DATA SHEET. ARUBA RAP-100 SERIES REMOTE ACCESS POINTS (2016). Available at: Accessed 3 Nov 2016
  25. 25.
    Cisco Aironet 1240AG Series 802.11A/B/G Access Point Data Sheet (2016). Available at: Accessed 3 Nov 2016
  26. 26.
    Cisco Aironet 1230AG Series 802.11A/B/G Access Point Data Sheet (2016). Available at: Accessed 3 Nov 2016
  27. 27.
    Cisco Aironet 1130AG IEEE 802.11 A/B/G Access Point (2016). Available at: Accessed 3 Nov 2016
  28. 28.
    Aerohive AP121 (2016). Available at: Accessed 3 Nov 2016
  29. 29.
    Aerohive AP230 (2016). Available at: Accessed 3 Nov 2016
  30. 30.
    Aerohive AP330 (2016). Available at: Accessed 3 Nov 2016

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jose M. Jimenez
    • 1
    Email author
  • Oscar Romero
    • 1
  • Jaime Lloret
    • 1
  • Juan R. Diaz
    • 1
  1. 1.Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations