Advertisement

Mobile Networks and Applications

, Volume 21, Issue 2, pp 367–374 | Cite as

Multi-hop Mobility Prediction

  • Zhiyong YuEmail author
  • Zhiwen Yu
  • Yuzhong Chen
Article

Abstract

With the occurrence of large-scale human trajectories, which imply spatial and temporal patterns, the subject of mobility prediction has been widely studied. A number of approaches are proposed to predict the next location of a user. In this paper, we expect to lengthen the temporal dimension of prediction results beyond one hop. To predict the future locations of a user at every time unit within a specified time, we propose a Markov-based multi-hop mobility prediction (Markov–MHMP) algorithm. It is a hybrid approach that considers multiple factors including personal habit, weekday similarity, and collective behavior. On a GPS dataset, our approach performs prediction better than baseline and state-of-the-art approaches under several evaluation criteria.

Keywords

Multi-hop mobility prediction Markov model GPS trajectories Crowd sensing 

Notes

Acknowledgments

This study is partially supported by the National Natural Science Foundation of China (No. 61300103).

References

  1. 1.
    Zheng Y, Zhang L, Ma Z, Xie X, Ma W-Y (2011) Recommending friends and locations based on individual location history. ACM Trans Web 5:1–44. doi: 10.1145/1921591.1921596 CrossRefGoogle Scholar
  2. 2.
    Xiong H, Zhang D, Zhang D, Gauthier V (2012) Predicting mobile phone user locations by exploiting collective behavioral patterns. In: 9th International Conference on Ubiquitous Intelligence and Computing. doi:  10.1109/uic-atc.2012.28
  3. 3.
    Guo B, Chen H, Yu Z, Xie X, Huangfu S, Zhang D (2015) FlierMeet: a mobile crowdsensing system for cross-space public information reposting, tagging, and sharing. IEEE Trans Mob Comput 14:2020–2033. doi: 10.1109/tmc.2014.2385097 CrossRefGoogle Scholar
  4. 4.
    Burke JA, Estrin D, Hansen M, Parker A. Ramanathan N, Reddy S, Srivastava MB (2006) Participatory sensing, WSW’06 at SenSys’06, October 31, Boulder, Colorado, USAGoogle Scholar
  5. 5.
    Resch B, Calabrese F, Biderman A, Ratti C (2008) An approach towards real-time data exchange platform system architecture. In: 2008 I.E. International Conference on Pervasive Computing and Communications (PerCom). IEEE, pp 153–159Google Scholar
  6. 6.
    Qu Y, Yu Z, Zheng X (2015) Buy4Me: a delivery system via mobility prediction based on mobile crowd sensing. In: 7th International Symposium on UbiCom Frontiers - Innovative Research, Systems and Technologies, August 10–14, Beijing, ChinaGoogle Scholar
  7. 7.
    Yu Z, Wang H, Bin Guo GT, Mei T (2015) Supporting serendipitous social interaction using human mobility prediction. IEEE Trans Hum Mach Syst. doi: 10.1109/thms.2015.2451515 Google Scholar
  8. 8.
    Carroll JM, Neale DC, Isenhour PL, Rosson MB, McCrickard DS (2003) Notification and awareness: synchronizing task-oriented collaborative activity. Int J Hum Comput Stud 58:605–632. doi: 10.1016/S1071-5819(03)00024-7 CrossRefGoogle Scholar
  9. 9.
    Ma H, Zhao D, Yuan P (2015) Opportunities in mobile crowd sensing. IEEE Commun Mag 52:29–35. doi: 10.1109/MCOM.2014.6871666 CrossRefGoogle Scholar
  10. 10.
    Pirozmand P, Wu G, Jedari B, Xia F (2014) Human mobility in opportunistic networks: characteristics, models and prediction methods. J Netw Comput Appl 42:45–58. doi: 10.1016/j.jnca.2014.03.007 CrossRefGoogle Scholar
  11. 11.
    Liu GY, Gerald MQ (1995) A predictive mobility management algorithm for wireless mobile computing and communications. In: IEEE International Conference on Universal Personal Communications, pp 268–272Google Scholar
  12. 12.
    Liu T, Bahl P, Chlamtac I (1998) Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks. IEEE J Sel Areas Commun 16:922–936. doi: 10.1109/49.709453 CrossRefGoogle Scholar
  13. 13.
    Xu B, Wolfson O (2003) Time-series prediction with applications to traffic and moving objects databases. In: MobiDe’03. ACM Press, New York, pp 56–60Google Scholar
  14. 14.
    Lin M, Hsu W-J (2014) Mining GPS data for mobility patterns: a survey. Pervasive Mob Comput 12:1–16. doi: 10.1016/j.pmcj.2013.06.005 CrossRefGoogle Scholar
  15. 15.
    Song L, Kotz D, Jain R, He X (2006) Evaluating next-cell predictors with extensive Wi-Fi mobility data. IEEE Trans Mob Comput 5:1633–1649. doi: 10.1109/TMC.2006.185 CrossRefGoogle Scholar
  16. 16.
    Mathew W, Raposo R, Martins B (2012) Predicting future locations with hidden Markov models. In: UbiComp’12. ACM Press, New York, pp 911–918Google Scholar
  17. 17.
    Baumann P, Kleiminger W, Santini S (2013) The influence of temporal and spatial features on the performance of next-place prediction algorithms. In: ACM international joint conference on Pervasive and ubiquitous computing (UbiComp’13). doi:  10.1145/2493432.2493467
  18. 18.
    Cho S-B (2015) Exploiting machine learning techniques for location recognition and prediction with smartphone logs. Neurocomputing. doi: 10.1016/j.neucom.2015.02.079 Google Scholar
  19. 19.
    McInerney J, Zheng J, Rogers A, Jennings NR (2013) Modelling heterogeneous location habits in human populations for location prediction under data sparsity. In: ACM international joint conference on pervasive and ubiquitous computing, pp 469–478Google Scholar
  20. 20.
    Do TMT, Gatica-Perez D (2012) Contextual conditional models for smartphone-based human mobility prediction. In: UbiComp’12. ACM Press, USA, pp 163Google Scholar
  21. 21.
    Scellato S, Musolesi M, Mascolo C, Latora V, Campbell AT (2011) NextPlace: a spatio-temporal prediction framework for pervasive systems. In: Pervasive Computing. Springer, Berlin Heidelberg, pp 152–169Google Scholar
  22. 22.
    Noulas A, Scellato S, Lathia N, Mascolo C (2012) Mining user mobility features for next place prediction in location-based services. In: IEEE 12th International Conference on Data Mining. doi:  10.1109/icdm.2012.113
  23. 23.
    Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) WhereNext: a location predictor on trajectory pattern mining. In: KDD ‘09. ACM Press, New York, pp 637–646Google Scholar
  24. 24.
    Chon Y, Shin H, Talipov E, Cha H (2012) Evaluating mobility models for temporal prediction with high-granularity mobility data. In: IEEE International Conference on Pervasive Computing and Communications. doi:  10.1109/percom.2012.6199868
  25. 25.
    Krumm J, Horvitz E (2006) Predestination: inferring destinations from partial trajectories. In: Pervasive computing. Springer, Berlin Heidelberg, pp 243–260Google Scholar
  26. 26.
    Alvarez-Garcia JA, Ortega JA, Gonzalez-Abril L, Velasco F (2010) Trip destination prediction based on past GPS log using a Hidden Markov Model. Expert Syst Appl 37:8166–8171. doi: 10.1016/j.eswa.2010.05.070 CrossRefGoogle Scholar
  27. 27.
    Salzberg SL (1994) C4.5: programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach Learn 16:235–240. doi: 10.1007/BF00993309 MathSciNetGoogle Scholar
  28. 28.
    McInerney J, Zheng J, Rogers A, Jennings NR (2013) Modelling heterogeneous location habits in human populations for location prediction under data sparsity. In: UbiComp’13. ACM Press, New York, pp 469Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Fuzhou UniversityFuzhouChina
  2. 2.Northwestern Polytechnical UniversityXi’anChina

Personalised recommendations