Mobile Networks and Applications

, Volume 19, Issue 2, pp 235–248 | Cite as

Context-aware Composition of Semantic Web Services

Article

Abstract

Service-based systems are usually conceived and executed in highly dynamic environments, characterized by complex and continuously evolving users’ requirements and surrounding conditions. To address this dynamicity, these systems should be designed keeping in mind the different execution contexts where they could be used. This typically impacts service discovery and composition with the aim of dynamically forging the system behavior better fitting a given context. This paper proposes a design approach based on a semantic model for context representation. It is an extension of the OWL-S ontology aimed at enriching the expressiveness of each section of a typical OWL-S semantic service description, by means of context conditions and adaptation rules. By having access to continuously updated context information, these descriptions can be exploited by a discovery/composition tool to automatically find the atomic or composite services that can be better-tuned to the requestor’s behaviors and to the particular situations of the surrounding environment.

Keywords

Context-aware computing Context modeling Semantic Web Services Service design Service discovery Service composition 

References

  1. 1.
    Akogrimo: Access to knowledge through the grid in a mobile world. http://www.mobilegrids.org/. Last checked: February 2014
  2. 2.
    Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P (1999) Towards a better understanding of context and context-awareness. In: Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, HUC ’99. Springer-Verlag, London, pp 304–307Google Scholar
  3. 3.
    Athanasopoulos D, Zarras AV, Issarny V, Pitoura E, Vassiliadis P (2008) Cowsami: interface-aware context gathering in ambient intelligence environments. Pervasive Mob Comput 4(3):360–389. doi:10.1016/j.pmcj.2007.12.004 CrossRefGoogle Scholar
  4. 4.
    Bevilacqua L, Furno A, di Carlo V, Zimeo E (2011) A tool for automatic generation of ws-bpel compositions from owl-s described services. In: 2011 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA), pp 1–8. doi:10.1109/SKIMA.2011.6090024
  5. 5.
    Bevilacqua L, Furno A, di Carlo V, Zimeo E (2012) Automatic generation of concrete compositions in adaptive contexts [to appear]. Mediterr J Comput NetwGoogle Scholar
  6. 6.
    Blum AL, Furst ML (1995) Fast planning through planning graph analysis. Artif Intell 90(1):1636–1642Google Scholar
  7. 7.
    Bolchini C, Curino CA, Orsi G, Quintarelli E, Rossato R, Schreiber FA, Tanca L (2009) And what can context do for data?Commun ACM 52(11):136–140. doi:10.1145/1.592761.1592793 CrossRefGoogle Scholar
  8. 8.
    Chen I, Yang S, Zhang J (2006) Ubiquitous provision of context aware web services. In: Services Computing, 2006. IEEE International Conference on SCC ’06, pp 60–68Google Scholar
  9. 9.
    Ghallab M, Isi CK, Penberthy S, Smith DE, Sun Y, Weld D (1998) PDDL - the planning domain definition language. Tech. rep., CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control. doi:http://www.informatik.uni-ulm.de/ki/Edu/Vorlesungen/GdKI/WS0203/pddl.pdf
  10. 10.
    Hafiddi H, Baidouri H, Nassar M, Kriouile A (2012) An aspect based pattern for context-awareness of services. Int J Comput Sci Netw Secur 12(1):71–78Google Scholar
  11. 11.
    Li L, Liu D, Bouguettaya A (2011) Semantic based aspect-oriented programming for context-aware web service composition. Inf Syst 36(3):551–564. doi:10.1016/j.is.2010.06.003 CrossRefGoogle Scholar
  12. 12.
    Maamar Z, Benslimane D, Narendra NC (2006) What can context do for web services? Commun ACM 49(12):98–103. doi:10.1145/1.183236.1183238 CrossRefGoogle Scholar
  13. 13.
    Pascoe J (1998) Adding generic contextual capabilities to wearable computers. In: Wearable Computers, 1998. 2nd International Symposium on Digest of Papers. pp 92–99. doi:10.1109/ISWC.1998.729534
  14. 14.
    Pellier D (2011) PDDL4J. http://sourceforge.net/projects/pdd4j/. Last checked: February 2014
  15. 15.
    Polese M, Tretola G, Zimeo E (2010) Self-adaptive management of web processes. In: 2010 12th IEEE International Symposium on Web Systems Evolution (WSE), pp 33–42. doi:10.1109/WSE.2010.5623573
  16. 16.
    Rasch K, Li F, Sehic S, Ayani R, Dustdar S (2011) Context-driven personalized service discovery in pervasive environments. World Wide Web 14:295–319CrossRefGoogle Scholar
  17. 17.
    Schilit B, Adams N, Want R (1994) Context-aware computing applications. In: Proceedings of the 1994 First Workshop on Mobile Computing Systems and Applications, WMCSA ’94. IEEE Computer Society, Washington, pp 85–90. doi:10.1109/WMCSA.1994.16 Google Scholar
  18. 18.
    Tretola G, Zimeo E (2010) Autonomic internet-scale workflows. In: Proceedings of the 3rd International Workshop on Monitoring, Adaptation and Beyond, MONA ’10. ACM, New York, pp 48–56. doi:10.1145/1.929566.1929573 CrossRefGoogle Scholar
  19. 19.
    Truong HL, Dustdar S (2009) A survey on context-aware web service systems. Int J Web Inf Syst 5(1):5–31. doi:10.1108/17440080910947295 CrossRefGoogle Scholar
  20. 20.
    Xiao H, Zou Y, Ng J, Nigul L (2010) An approach for context-aware service discovery and recommendation. In: 2010 IEEE International Conference on Web Services (ICWS), pp 163–170. doi:10.1109/ICWS.2010.95
  21. 21.
    Zhou J, Gilman E, Palola J, Riekki J, Ylianttila M, Sun J (2011) Context-aware pervasive service composition and its implementation. Personal Ubiquitous Comput 15(3):291–303. doi:10.1007/s00779-010-0333-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of SannioBeneventoItaly

Personalised recommendations