Mobile Networks and Applications

, Volume 18, Issue 3, pp 357–372 | Cite as

Scalable Data Processing for Community Sensing Applications

  • Sérgio Duarte
  • David Navalho
  • Heitor Ferreira
  • Nuno Preguiça


Participatory Sensing is a new computing paradigm that aims to turn personal mobile devices into advanced mobile sensing networks. For popular applications, we can expect a huge number of users to both contribute with sensor data and request information from the system. In such scenario, scalability of data processing becomes a major issue. In this paper, we present a system for supporting participatory sensing applications that leverages cluster or cloud infrastructures to provide a scalable data processing infrastructure. We propose and evaluate three strategies for data processing in this architecture.


Participatory sensing Distributed processing Mobile computing 



We would like to thank the anonymous reviewers for their helpful comments. This work was supported partially by project #PTDC/EIA/76114/2006 and PEst-OE/EEI/UI0527/2011—CITI/FCT/UNL/2011–12.


  1. 1.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114CrossRefGoogle Scholar
  2. 2.
    Campbell AT, Eisenman SB, Lane ND, Miluzzo E, Peterson RA, Lu H, Zheng X, Musolesi M, Fodor K, Ahn G-S (2008) The rise of people-centric sensing. IEEE Internet Computing 12(4):12–21CrossRefGoogle Scholar
  3. 3.
    Cherniack M, Balakrishnan H, Balazinska M, Carney D, Çetintemel U, Xing Y, Zdonik SB (2003) Scalable distributed stream processing. In: Proceedings of the first biennial conference on innovative data systems research, CIDR’03, pp 1–12Google Scholar
  4. 4.
    Chun B-G, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the sixth conference on computer systems, EuroSys’11. ACM, New York, NY, USA, pp 301–314CrossRefGoogle Scholar
  5. 5.
    Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy K, Sears R (2010) Mapreduce online. In: Proceedings of the 7th USENIX symposium on networked systems design and implementation, NSDI 2010. USENIX Association, pp 313–328Google Scholar
  6. 6.
    Cornelius C, Kapadia A, Kotz D, Peebles D, Shin M, Triandopoulos N (2008) Anonysense: privacy-aware people-centric sensing. In: Proceedings of the 6th international conference on mobile systems, applications, and services, MobiSys ’08. ACM, New York, NY, USA, pp 211–224Google Scholar
  7. 7.
    Cuervo E, Balasubramanian A, Cho D-K, Wolman A, Saroiu S, Chandra R, Bahl P (2010) Maui: making smartphones last longer with code offload. In: Proceedings of the 8th ACM international conference on Mobile systems, applications, and services, MobiSys ’10. ACM, New York, NY, USA, pp 49–62Google Scholar
  8. 8.
    Cuff D, Hansen M, Kang J (2008) Urban sensing: out of the woods. Commun ACM 51(3):24–33CrossRefGoogle Scholar
  9. 9.
    Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: Proc. OSDI 2004Google Scholar
  10. 10.
    Eisenman SB, Miluzzo E, Lane ND, Peterson RA, Ahn G-S, Campbell AT (2007) The bikenet mobile sensing system for cyclist experience mapping. In: Proc. ACM SenSys 2007Google Scholar
  11. 11.
    Eriksson J, Girod L, Hull B, Newton R, Madden S, Balakrishnan H (2008) The Pothole patrol: using a mobile sensor network for road surface monitoring. In: Proceedings of the 6th international conference on mobile systems, applications, and services, MobiSys ’08. ACM, New York, NY, USA, pp 29–39Google Scholar
  12. 12.
    Ferreira H, Duarte S, Preguiça N, Navalho D (2012) Scalable data processing for community sensing applications. In: Puiatti A, Gu T (eds) Mobile and ubiquitous systems: computing, networking, and services, Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol 104. Springer Berlin, Heidelberg, pp 75–87 CrossRefGoogle Scholar
  13. 13.
    Ferreira H, Duarte S, Preguiça N (2010) 4Sensing—decentralized processing for participatory sensing data. In: Proceedings of the 2010 IEEE 16th international conference on parallel and distributed systems, ICPADS ’10. IEEE Computer Society, Washington, DC, pp 306–313CrossRefGoogle Scholar
  14. 14.
    Ganti RK, Pham N, Tsai Y-E, Abdelzaher TF (2008) Poolview: stream privacy for grassroots participatory sensing. In: Proc. ACM SenSys 2008Google Scholar
  15. 15.
    Groovy (2012) Accessed 1 Aug 2012
  16. 16.
    Grosky W, Kansal A, Nath S, Liu J, Zhao F (2007) Senseweb: an infrastructure for shared sensing. IEEE Multimed 14(4):8–13CrossRefGoogle Scholar
  17. 17.
    Gruteser M, Grunwald D (2003) Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st international conference on mobile systems, applications and services, MobiSys ’03. ACM, New York, NY, USA, pp 31–42CrossRefGoogle Scholar
  18. 18.
    Gupta A, Liskov B, Rodrigues R (2003) One hop lookups for peer-to-peer overlays. In: of the 9th conference on hot topics in operating systems, vol 9. USENIX Association, HOTOS’03, Berkeley, CA, USA, pp 1–6Google Scholar
  19. 19.
    Hoh B, Gruteser M, Herring R, Ban J, Work D, Herrera J-C, Bayen AM, Annavaram M, Jacobson Q (2008) Virtual trip lines for distributed privacy-preserving traffic monitoring. In: Proceedings of the 6th international conference on mobile systems, applications, and services, MobiSys ’08. ACM, New York, NY, USA, pp 15–28Google Scholar
  20. 20.
    Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu AK, Shih E, Balakrishnan H, Madden S (2006) CarTel: a distributed mobile sensor computing system. In: Proc. ACM SenSys 2006Google Scholar
  21. 21.
    Intanagonwiwat C, Govindan R, Estrin D (2000) Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the 6th annual international conference on mobile computing and networking, MobiCom ’00. ACM, New York, NY, USA, pp 56–67CrossRefGoogle Scholar
  22. 22.
    Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: distributed data-parallel programs from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European conference on computer systems 2007, EuroSys ’07. ACM, New York, NY, USA, pp 59–72CrossRefGoogle Scholar
  23. 23.
    Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) Tinydb: an acquisitional query processing system for sensor networks. ACM Trans Database Syst 30:122–173CrossRefGoogle Scholar
  24. 24.
    Marie Kim YJL, Wook Lee J, Ryou J-C (2008) Cosmos: a middleware for integrated data processing over heterogeneous sensor networks. ETRI J 30(5):696–706CrossRefGoogle Scholar
  25. 25.
    Mohan P, Padmanabhan V, Ramjee R (2008) Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proc. ACM SenSys 2008Google Scholar
  26. 26.
    Mun M, Reddy S, Shilton K, Yau N, Burke J, Estrin D, Hansen M, Howard E, West R, Boda P (2009) Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proceedings of the 7th international conference on mobile systems, applications, and services, MobiSys ’09. ACM, New York, NY, USA, pp 55–68CrossRefGoogle Scholar
  27. 27.
    Neumeyer L, Robbins B, Nair A, Kesari A (2010) S4: distributed stream computing platform. In: Proceedings of the 2010 IEEE international conference on data mining workshops (ICDMW), pp 170–177Google Scholar
  28. 28.
    OpenStreeMap (2012) Accessed 1 Aug 2012
  29. 29.
    Stuedi P, Mohomed I, Balakrishnan M, Mao ZM, Ramasubramanian V, Terry D, Wobber T (2011) Contrail: enabling decentralized social networks on smartphones. In: Kon F, A-M Kermarrec A-M (eds) Middleware 2011 of Lecture Notes in Computer Science, vol 7049. Springer Berlin, Heidelberg, pp 41–60Google Scholar
  30. 30.
    Su Y-Y, Flinn J (2005) Slingshot: deploying stateful services in wireless hotspots. In: Proceedings of the 3rd international conference on mobile systems, applications, and services, MobiSys ’05. ACM, New York, NY, USA, pp 79–92CrossRefGoogle Scholar
  31. 31.
    Tanin E, Harwood A, Samet H (2007) Using a distributed quadtree index in peer-to-peer networks. VLDB J 16(2):165–178CrossRefGoogle Scholar
  32. 32.
    Tayeb J, Ulusoy Ö, Wolfson O (1998) A quadtree-based dynamic attribute indexing method. Comput J 41(3):185–200zbMATHCrossRefGoogle Scholar
  33. 33.
    Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sérgio Duarte
    • 1
  • David Navalho
    • 1
  • Heitor Ferreira
    • 1
  • Nuno Preguiça
    • 1
  1. 1.CITI - Departamento de Informática Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations