Advertisement

Mobile Networks and Applications

, Volume 17, Issue 1, pp 4–20 | Cite as

A Survey of Green Mobile Networks: Opportunities and Challenges

  • Xiaofei Wang
  • Athanasios V. Vasilakos
  • Min Chen
  • Yunhao Liu
  • Ted Taekyoung KwonEmail author
Article

Abstract

The explosive development of Information and Communication Technology (ICT) has significantly enlarged both the energy demands and the CO 2 emissions, and consequently contributes to make the energy crisis and global warming problems worse. However, as the main force of the ICT field, the mobile networks, are currently focusing on the capacity, variety and stability of the communication services, without paying too much severe concerns on the energy efficiency. The escalating energy costs and environmental concerns have already created an urgent need for more energy-efficient “green” wireless communications. In this paper, we survey and discuss various remarkable techniques toward green mobile networks to date, mainly targeting mobile cellular networks. We also summarize the current research projects related to green mobile networks, along with the taxonomy of energy-efficiency metrics. We finally discuss and elaborate future research opportunities and design challenges for green mobile networks.

Keywords

mobile networks energy efficiency green technique 

Notes

Acknowledgements

This research was partly supported by NAP of Korea Research Council of Fundamental Science & Technology, and also supported by the KCC (Korea Communications Commission), Korea, under the R&D program supervised by the KCA (Korea Communications Agency) (KCA-2011-11-913-05-002). The ICT at Seoul National University provides research facilities for this study.

References

  1. 1.
    Fettweis G, Zimmermann E (2008) ICT energy consumption-trends and challenges. In: Proceedings of the 11th international symposium on Wireless Personal Multimedia Communications (WPMC)Google Scholar
  2. 2.
    Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddal M (2007) Climate change and trace gases. Philos Trans R Soc 365(1856):1925–1954CrossRefGoogle Scholar
  3. 3.
    Williams F (2008) Green wireless communications. eMobility, Tech. RepGoogle Scholar
  4. 4.
    Kelly T (2007) ICTs and climate change. ITU-T Technology, Tech. RepGoogle Scholar
  5. 5.
    Karl H (2003) An overview of energy efficient techniques for mobile communication systems. Technische University Berlin, Tech. RepGoogle Scholar
  6. 6.
    McLaughlin S (2008) Green radio: the key issues—programme objectives and overview. Wireless World Research ForumGoogle Scholar
  7. 7.
    CISCO (2010) Cisco visual networking index: global mobile data traffic forecast update, 2010—2015, Tech. RepGoogle Scholar
  8. 8.
    McGreehan J (2009) Climate change and natural resources: what contribution can wireless communications make? UK Green Wireless Communication—Future Trend and TechnologyGoogle Scholar
  9. 9.
    Etoh M, Ohya T, Nakayama Y (2008) Energy consumption issues on mobile network systems. In: Proceedings of the 2008 international Symposium on Applications and the Internet (SAINT)Google Scholar
  10. 10.
    GreenTouch Open Forum (2011) Seoul, South Korea, April 8Google Scholar
  11. 11.
    Haardt M (2008) Future mobile and wireless radio systems: challenges in European research. The European Commision, Tech. RepGoogle Scholar
  12. 12.
    Quittek J (ed) (2010) Requirements for power monitoring. Internet Draft, Network Working Group, IETF. http://tools.ietf.org/html/draft-quittek-power-monitoring-requirements-02. Accessed 28 November 2010
  13. 13.
    Quittek J (ed) (2010) Definition of managed objects for energy management. Internet Draft, Network Working Group, IETF. http://tools.ietf.org/html/draft-quittek-power-mib-02. Accessed 28 November 2010
  14. 14.
    Knisely D, Yoshizawa T, Favichia F (2009) Standardization of Femtocells in 3GPP. IEEE Commun Mag 47(9): 68–75CrossRefGoogle Scholar
  15. 15.
    Knisely D, Favichia F (2009) Standardization of Femtocells in 3GPP2. IEEE Commun Mag 47(9):76–82CrossRefGoogle Scholar
  16. 16.
    Jones CE, Sivalingam KM, Agrawal P, Chen JC (2001) A survey of energy efficient network protocols for wireless networks. Wirel Netw 7:343–358zbMATHCrossRefGoogle Scholar
  17. 17.
    Anastasia G, Contib M, Francescoa M, Passarellab A (2009) Energy conservation in wireless sensor networks: a survey. Ad Hoc Networks 7(3):537–568CrossRefGoogle Scholar
  18. 18.
    Lister D (2009) An operator’s view on green radio. Keynote Speech, GreenCommGoogle Scholar
  19. 19.
    Karl H (2003) An overview of energy-efficiency techniques for mobile communication systems. Telecommunication Networks Group, TKN-03-017, Tech. RepGoogle Scholar
  20. 20.
    Zeller D, Blume O, Ferling D (2010) Challenges and enabling technologies for energy aware mobile radio networks. IEEE Commun Mag 48(11):66–72CrossRefGoogle Scholar
  21. 21.
    Jiang H, Zhuang W, Shen X (2005) Cross-layer design for resource allocation in 3G wireless networks and beyond. IEEE Commun Mag 43:120–126CrossRefGoogle Scholar
  22. 22.
    Snyder J (2007) Microsoft: datacenter growth Defies Moore’s Law. PCWorld. http://www.pcworld.com/article/130921. Accessed 19 Oct 2010
  23. 23.
    Liu J, Zhao F, Liu X, He W (2009) Challenges towards elastic power management in internet data centers. In: Proceedings of the 29th IEEE international conference on distributed computing systems workshopsGoogle Scholar
  24. 24.
    Fisher W, Suchara M, Rexford J (2010) Greening backbone networks: reducing energy consumption by shutting off cables in bundled links. In: Proceedings of ACM SIGCOMM workshop on Green NetworkingGoogle Scholar
  25. 25.
    Heller B, Seetharaman S, Mahadevan P, Yiakoumis Y, Sharma P, Banerjee S, McKeown N (2010) ElasticTree: saving energy in data center networks. In: Proceedings of USENIX NSDIGoogle Scholar
  26. 26.
    Liu L, Wang H, Liu X, Jin X, He WB, Wang QB, Chen Y (2009) GreenCloud: a new architecture for green data center. In: Proceedings of the 6th International Conference on Autonomic Computing and Communications (ICAC)Google Scholar
  27. 27.
    Ye K, Huang D, Jiang X, Chen H, Wu S (2010) Virtual machine based energy-efficient data center architecture for cloud computing: a performance perspective. In: Proceedings of GreenComGoogle Scholar
  28. 28.
    Meng X, Pappas V, Zhang L (2010) Improving the scalability of data center networks with traffic-aware virtual machine placement. In: Proceedings of IEEE INFOCOMGoogle Scholar
  29. 29.
    Matt S (2009) The green data center 2.0: energy-efficient computing in the 21st century, chapter 3, 2009 update. http://wp.bitpipe.com/resource/org_979246117_954/Green%20data%20center%20ch3%200109_v9.pdf
  30. 30.
    Meijer GI (2010) Cooling energy-hungry data centers. Science 328(5976):318–319CrossRefGoogle Scholar
  31. 31.
    Jie L, Feng Z, Jeff O’R, Amaya S, Michael M, Chieh-J M L, Andreas T (2008) Project Genome: wireless network for data center cooling. The Architecture Journal, Microsoft 18:28–34Google Scholar
  32. 32.
    Marsan MA, Chiaraviglio L, Ciullo D, Meo M (2009) Optimal energy savings in cellular access networks. In: Proceedings of IEEE ICC, GreenComm workshopGoogle Scholar
  33. 33.
    Zhou S, Gong J, Yang Z, Niu Z, Yang P (2009) Green mobile access network with dynamic base station energy saving. In: Proceedings of ACM MobiComGoogle Scholar
  34. 34.
    Liao WH, Yen WM (2009) Power-saving scheduling with a QoS guarantee in a mobile WiMAX system. J Netw Comput Appl 32(6):1144–1152CrossRefGoogle Scholar
  35. 35.
    Han C, Beh KC, Nicolau M, Armour S, Doufexi A (2010) Power efficient dynamic resource scheduling algorithms for LTE. In: Proceedings of IEEE VTC-fallGoogle Scholar
  36. 36.
    Niu Z, Wu Y, Gong J, Yang Z (2010) Cell zooming for cost-efficient green cellular networks. IEEE Commun Mag 48(11):74–79CrossRefGoogle Scholar
  37. 37.
    Bhaumik S, Narlikar G, Chattopadhyay S, Kanugovi S (2010) Breathe to stay cool: adjusting cell sizes to reduce energy consumption. In: Proceedings of ACM SIGCOMM workshop on green networkingGoogle Scholar
  38. 38.
    Mobile Europe (2008) Green base station—the benefits of going green. http://www.mobileeurope.co.uk/news/features/7603-7641. Accessed 19 Oct 2010
  39. 39.
    Haynes T (2007) Designing energy-smart 3G base stations. RF design magazine. http://rfdesign.com/mag/708RFDF1.pdf. Accessed 19 Oct 2010
  40. 40.
    Hammi O, Kwan AKC, Helaoui M, Ghannouchi FM (2010) Green power amplification systems for 3G+ wireless communication infrastructure. In: Proceedings of VTC-fallGoogle Scholar
  41. 41.
    Chen T, Zhang H (2010) Towards green wireless access networks. In: Proceedings of ChinaComGoogle Scholar
  42. 42.
    Ericsson (2009) Extended cell DTX for enhanced energy-efficient network operation (2009). 3GPP R1-095011Google Scholar
  43. 43.
    Huawei (2010) Overview to LTE energy saving solutions to cell switch off/on (2010). 3GPP R1-100162Google Scholar
  44. 44.
    Juniper (2009) Green mobile networks and base stations strategies, scenarios and forecasts 2009–2014. Juniper Research, White PaperGoogle Scholar
  45. 45.
    Chandrasekhar V, Andrews JG (2009) Femtocell Networks: a survey. IEEE Commun Mag 46(9):59–67CrossRefGoogle Scholar
  46. 46.
    Kim RY, Kwak JS (2009) WiMAX Femtocell: requirements, challenges, and solutions. IEEE Commun Mag 47(9):84–91CrossRefGoogle Scholar
  47. 47.
    Golaup A, Mustapha M, Patanapongpibul LB (2009) Femtocell access control strategy in UMTS and LTE. IEEE Commun Mag 47(9):117–123CrossRefGoogle Scholar
  48. 48.
    S-ping Y, Talwar S, Corp I, S-choon L, Kim H (2008) WiMAX Femtocells: a perspective on network architecture, capacity, and coverage. IEEE Commun Mag 46(10):58–65CrossRefGoogle Scholar
  49. 49.
    Claussen H, Ho LTW, Samuel LG (2008) Self-optimization of coverage for Femtocell deployments. In: Proceedings of wireless telecommunications symposium symposiumGoogle Scholar
  50. 50.
    Chandrasekhar V, Andrews JG (2009) Uplink capacity and interference avoidance for two-tier Femtocell networks. IEEE Trans Wirel Commun 8(7):3498–3509Google Scholar
  51. 51.
    Jada M, Hamalainen J, Jantti R, Hossain MMA (2010) Impact of Femtocells to the WCDMA network energy efficiency. In: Proceedings of IEEE international conference on broadband network and multimedia technologyGoogle Scholar
  52. 52.
    Arulselvan N, Ramachandran V, Kalyanasundaram S, Guang H (2009) Distributed power control mechanisms for HSDPA Femtocells. In: Proceedings of VTC springGoogle Scholar
  53. 53.
    Jin J, Li B (2010) Cooperative resource management in cognitive WiMAX with Femtocells. In Proceedings of IEEE INFOCOMGoogle Scholar
  54. 54.
    Kwak DY, Lee JS, Oh YC, Lee SC (2008) Development of WiBro (Mobile WiMAX) Femtocell and related technical issues. In: Proceedings of IEEE GlobecomGoogle Scholar
  55. 55.
    Andrews M, Capdevielle V, Feki A, Gupta P (2010) Autonomous spectrum sharing for mixed LTE Femto and macro cells deployments. In: Proceedings of IEEE INFOCOMGoogle Scholar
  56. 56.
    Chandrasekhar V, Andrews JG, Muharemovic T, Shen Z, Gatherer A (2009) Power Control in Two-tier Femtocell Networks. IEEE Trans Wirel Commun 8(8):4316–4328CrossRefGoogle Scholar
  57. 57.
    Rodriguez NV, Hui P, Crowcroft J, Rice A (2010) Exhausting battery statistics, understanding the energy demands on mobile handsets. In: Proceedings of ACM MobiHeldGoogle Scholar
  58. 58.
    Falaki H, Lymberopoulos D, Mahajan R, Kandula S, Estrin D (2010) A first look at traffic on Smartphones. In: Proceedings of ACM internet measurement conferenceGoogle Scholar
  59. 59.
    Wang L, Manner J (2010) Energy consumption analysis of WLAN, 2G and 3G interfaces. In: Proceedings of GreenComGoogle Scholar
  60. 60.
    Rahmati A, Zhong L (2007) Context-for-wireless: context-sensitive energy-efficient wireless data transfer. In: Proceedings of ACM MobiSysGoogle Scholar
  61. 61.
    Ra MR, Paek JY, Sharma AB, Govindan R, Krieger MH, Neel MJ (2010) Energy-delay tradeoffs in Smartphone applications. In: Proceedings of ACM MobiSys, pp 255–270Google Scholar
  62. 62.
    Dogar FR, Steenkiste P, Papagiannaki K (2010) Catnap: exploiting high bandwidth wireless interfaces to save energy for mobile devices. In: Proceedings of ACM MobiSys, pp 107–233Google Scholar
  63. 63.
    Schulman A, Navda V, Ramjee R, Spring N, Deshpande P, Grunewald C, Padmanabhan VN, Jain K (2010) Bartendr: a practical approach to energy-aware cellular data scheduling. In: Proceedings ACM MobiComGoogle Scholar
  64. 64.
    Lu X, Erkip E, Wang Y, Goodman D (2004) Power efficient multimedia communication over wireless channels. IEEE J Sel Areas Commun 21(10):1738–1751Google Scholar
  65. 65.
    Baset S, Reich J, Janak J, Kasparek P, Misra V, Rubenstein D, Schulzrinne H (2010) How green is IP-telephony? In: Proceedings of ACM SIGCOMM workshop on green networkingGoogle Scholar
  66. 66.
    Anand B, Ananda AL, Chan MC, Le LT, Balan RK (2009) Game action based power management for multiplayer online game. In: Proceedings of the 1st ACM workshop on networking, systems, and applications for Mobile Handhelds (MobiHeld)Google Scholar
  67. 67.
    Kelenyi I, Nurminen JK (2010) CloudTorrent—energy-efficient bittorrent content sharing for mobile devices via cloud services. In: Proceedings of IEEE Consumer Communications and Networking Conference (CCNC)Google Scholar
  68. 68.
    Kelenyi I, Ludanyi A, Nurminen JK (2010) BitTorrent on mobile phones—energy efficiency of a distributed proxy solution. In: Proceedings of international green computing confederacyGoogle Scholar
  69. 69.
    Skyhook http://www.skyhookwireless.com. Accessed 19 Oct 2010
  70. 70.
    Kjargaard MB, Langdal J, Godsk T, Toftkjar T (2009) Entracked: energy-efficient robust position tracking for mobile devices. In: Proceedings of ACM MobiSys, pp 221–234Google Scholar
  71. 71.
    Constandache I, Gaonkar S, Sayler M, Choudhury RR, Cox O (2009) EnLoc: energy-efficient localization for mobile phones. In: Proceedings of INFOCOMGoogle Scholar
  72. 72.
    Lin K, Kansal A, Lymberopoulos D, Zhao F (2010) Energy-accuracy trade-off for continuous mobile device location. In: Proceedings of ACM MobiSys, pp 285–297Google Scholar
  73. 73.
    FP7 Consultation Meeting (2008) Europe future mobile and wireless radio systems: challenges in european research. Tech. RepGoogle Scholar
  74. 74.
    EARTH project: enablers for energy efficient wireless networks. https://www.ict-earth.eu. Accessed 25 Oct 2010
  75. 75.
    Green IT Initiatives in Japan. http://www.meti.go.jp/english/policy/GreenITInitiativeInJapan.pdf. Accessed 25 Oct 2010
  76. 76.
    GreenTouch http://www.greentouch.org. Accessed 25 Oct 2010
  77. 77.
    OPERA-Net Project. http://www.celtic-initiative.org/Projects/OPERA-Net. Accessed 25 Oct 2010
  78. 78.
  79. 79.
    The Mobile Virtual Centre of Excellence, Core 5 Research on Green Radio. http://www.mobilevce.com/frames.htm?core5research.htm. Accessed 25 Oct 2010
  80. 80.
    Cool Silicon http://www.cool-silicon.de. Accessed 25 Oct 2010
  81. 81.
    The Green Grid http://www.thegreengrid.org. Accessed 25 Oct 2010
  82. 82.
    Belady C (2007) Green grid data center power efficiency metrics: PUE and DCiE. Green Grid, White Paper. Accessed 28 Nov 2010Google Scholar
  83. 83.
    GSM Lunches Mobile Energy Efficiency Network Benchmarking Service. GSM World. http://www.gsmworld.com/newsroom/press-releases/2010/5708.htm. Accessed 28 Nov 2010
  84. 84.
    GREEN500 http://www.green500.org/index.php. Accessed 28 Nov 2010
  85. 85.
  86. 86.
    Aruna Prem Bianzino, Anand Kishore Raju, Dario Rossi (2010) Apple-to-Apple: a framework analysis for energy-efficiency in networks. In: Proceedings of SIGMETRICS, 2nd GreenMetrics workshopGoogle Scholar
  87. 87.
    The Energy Consumption Rating (ECR) Initiative. http://www.ecrinitiative.org/pdfs/ECR_1_0_4.pdf. Accessed 28 Nov 2010
  88. 88.
    Kharitonov D (2008) Energy efficiency of ICT problem space, metrics, gaps. Juniper Tech. RepGoogle Scholar
  89. 89.
    ATIS-0600015.2009 (2009) Energy efficiency for telecommunication equipment: methodology for measurement and reporting general requirements. https://www.atis.org/docstore/product.aspx?id=25326. Accessed 28 Nov 2010
  90. 90.
    ATIS-0600015.01.2009 (2009) Energy efficiency for telecommunication equipment: methodology for measurement and reporting—server requirements. https://www.atis.org/docstore/product.aspx?id=25322. Accessed 28 Nov 2010
  91. 91.
    ATIS-0600015.02.2009 (2009) Energy efficiency for telecommunication equipment: methodology for measurement and reporting transport requirements. https://www.atis.org/docstore/product.aspx?id=25323. Accessed 28 Nov 2010
  92. 92.
    Verizon (2008) Verizon technical purchasing requirements. http://www.verizonnebs.com/TPRs/VZ-TPR-9205.pdf. Accessed 28 Nov 2010
  93. 93.
    ETSI (2008) Environmental engineering energy efficiency of wireless access network equipment. Technical Specification, ETSI TS 102:706Google Scholar
  94. 94.
    Bauch G, Dietl G (2008) MIMO is green: more antennas for less power consumption. In: Proceedings of the 1st international workshop on green wireless (W-GREEN)Google Scholar
  95. 95.
    GreenTouch (2011) GreenTouch demonstrates large-scale antenna—improving energy efficiency. http://www.youtube. com/watch?v=U3euDDr0uvo. Accessed 5 Mar 2011
  96. 96.
    Yang WH, Wang YC, Tseng YC, Lin BSP (2009) An energy-efficient handover scheme with geographic mobility awareness in WiMAX-WiFi integrated networks. In: Proceedings of IEEE WCNCGoogle Scholar
  97. 97.
    Richter F, Fehske AJ, Marsch R, Fettweis GP (2010) Traffic demand and energy efficiency in heterogeneous cellular mobile radio networks. In: IEEE 71st VTC-springGoogle Scholar
  98. 98.
    Sharma A, Navda V, Ramjee R, Padmanabhan V, Belding E (2010) Cool-Tether: energy efficient on-the-fly WiFi hot-spots using mobile phones. In: Proceedings of international Conference on emerging Networking Experiments and Technologies (CoNEXT)Google Scholar
  99. 99.
    Lei H, Fan Wang X, Chong PHJ (2010) Opportunistic relay selection in future green multihop cellular networks. In: Proceedings of IEEE VTC-fall, GreenNet workshopGoogle Scholar
  100. 100.
    Akyildiz IF, Lee WY, Vuran MC, Mohanty S (2009) A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 46(4):40–48CrossRefGoogle Scholar
  101. 101.
    Grace D, Chen J, Jiang T, Mitchell PD (2009) Using cognitive radio to deliver ‘green’ communications. In: Proceedings of CROWNCOMGoogle Scholar
  102. 102.
    Xiang L, Luo J, Vasilakos A (2011) Compressed data aggregation for energy efficient wireless sensor networks. In: Proceedings of SECONGoogle Scholar
  103. 103.
    Wang Y-C, Peng W-C, Tseng Y-C (2009) Energy-balanced dispatch of mobile sensors in a hybrid wireless sensor network. IEEE Trans Parallel Distrib Syst 21(12):1836–1850CrossRefGoogle Scholar
  104. 104.
    Li M, Liu Y (2010) Iso-Map: energy-efficient contour mapping in wireless sensor networks. IEEE Trans Knowl Data Eng 22(5):699–710zbMATHCrossRefGoogle Scholar
  105. 105.
    Liu Y, Liu K, Li M (2010) Passive diagnosis for wireless sensor networks. IEEE/ACM Trans Netw 18(4):1132–1144CrossRefGoogle Scholar
  106. 106.
    Mo L, He Y, Liu Y, Zhao J, Tang S, Li X-Y, Dai G (2009) Canopy closure estimates with greenorbs: sustainable sensing in the forest. In: Proceedings of SenSysGoogle Scholar
  107. 107.
    Liu Y, He Y, Li M, Wang J, Liu K, Mo L, Dong W, Yang Z, Xi M, Zhao J, Li X-Y (2011) Does wireless sensor network scale? A measurement study on GreenOrbs. In: Proceedings of IEEE INFOCOMGoogle Scholar
  108. 108.
    Wu G, Talwar S, Johnsson K, Himayat N, Johnson KD (2011) IEEE Commun Mag 49(4):36–43CrossRefGoogle Scholar
  109. 109.
    Chen Y, Yang Y (2009) Cellular based machine to machine communication with Un-Peer2Peer protocol stack. In: Proceedings of IEEE 70th VTC-fallGoogle Scholar
  110. 110.
    Lee EA (2008) Cyber physical systems: design challenges, Tech. RepGoogle Scholar
  111. 111.
    Venkatasubramanian KK, Banerjee A, Gupta SKS (2009) Green and sustainable cyber-physical security solutions for body are networks. In: Proceedings of the 6th international workshop on wearable and implantable body sensor networksGoogle Scholar
  112. 112.
    Springer (2010) Cloud computing: principles, systems and applications, book chapter as part of series computer communications and networksGoogle Scholar
  113. 113.
    GreenPeace (2010) Make IT green—cloud computing and its contribution to climate change. GreenPeace, Tech. RepGoogle Scholar
  114. 114.
    Accenture (2010) Cloud computing and sustainability: the environmental benefits of moving to the cloud. Accenture, White PaperGoogle Scholar
  115. 115.
    Baliga BJ, Ayre RWA, Hinton K, Tucker RS (2010) Green cloud computing: balancing energy in processing, storage and transport. In: Proceedings of the IEEEGoogle Scholar
  116. 116.
    Juniper (2010) Mobile Cloud Applications & Services Monetising Enterprise & Consumer Markets, 2009-2014. Juniper Research, Tech. RepGoogle Scholar
  117. 117.
    Aggarwal B, Chitnis P, Dey A, Jain K, Navda V, Padmanabhan VN, Ramjee R, Schulman A, Spring N (2010) Stratus: energy-efficient mobile communication using cloud support. In: Proceedings of ACM SIGCOMM demo sessionGoogle Scholar
  118. 118.
    Miettinen AP, Nurminen JK (2010) Energy efficiency of mobile clients in cloud computing. In: Proceedings of the 2nd USENIX conference on hot topics in cloud computingGoogle Scholar
  119. 119.
    Wendell P, Jiang JW, Freedman MJ, Rexford J (2010) DONAR: decentralized server selection for cloud services. In: Proceedings of ACM SIGCOMMGoogle Scholar
  120. 120.
    Kim S, Wang X, Kim H, Kwon TT, Choi Y (2010) Measurement and analysis of BitTorrent traffic in mobile WiMAX. In: Proceedings of IEEE international conference on Peer-2-Peer computing (P2P)Google Scholar
  121. 121.
    Wang X, Kim S, Kwon T, Kim H, Choi Y (2010) Unveiling the BitTorrent performance in the mobile WiMAX networks. In: Proceedings of international Passive and Active Measurement Conference (PAM)Google Scholar
  122. 122.
    Zhuang Z, Kim HH, Singh JP (2010) Improving energy efficiency of location sensing on Smartphones. In: Proceedings of ACM MobiSysGoogle Scholar
  123. 123.
    Constandache I, Choudhury RR, Rhee I (2010) Towards mobile phone localization without war-driving. In: Proceedings of IEEE INFOCOMGoogle Scholar
  124. 124.
    Constandache I, Bao X, Azizyan M, Choudhury RR (2010) Did you see Bob? Human localization using mobile phones. In: Proceedings of ACM MobiCom, pp 149–160Google Scholar
  125. 125.
    Courcoubetis C, Weber R (2003) Pricing communication networks—economics, technology and modelling. Wiley PressGoogle Scholar
  126. 126.
    Jung H, Tuffin B (2008) Pricing for heterogeneous services in OFDMA 802.16 systems. In: Proceedings of IEEE WONSGoogle Scholar
  127. 127.
    Cadre H, Bouhtou M, Tuffin B (2009) A pricing model for a mobile network operator sharing limited resource with a mobile virtual network operator. In: Proceedings of sixth international workshop on Internet Charging and QoS Technology (ICQT)Google Scholar
  128. 128.
    Feng N, Mau SC, Mandayam NB (2004) Pricing and power control for joint network-centric and user-centric radio resource management. IEEE Trans Commun 52(9):1544–1557CrossRefGoogle Scholar
  129. 129.
    Betz SM, Poor HV (2008) Energy efficient communications in CDMA networks: a game theoretic analysis considering operating costs. IEEE Trans Signal Process 56(10):5181–5190MathSciNetCrossRefGoogle Scholar
  130. 130.
    ABIresearch (2008) Mobile networks go green—minimizing power consumption and leveraging renewable energy, Tech. RepGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xiaofei Wang
    • 1
  • Athanasios V. Vasilakos
    • 2
  • Min Chen
    • 1
  • Yunhao Liu
    • 3
    • 4
  • Ted Taekyoung Kwon
    • 1
    Email author
  1. 1.School of Computer Science and EngineeringSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Computer and Telecomm. EngineeringUniversity of Western MacedoniaMacedoniaGreece
  3. 3.TNLIST and School of SoftwareTsinghua UniversityTsinghuaChina
  4. 4.Department of Computer Science and EngineeringHong Kong University of Science and TechnologyHong KongHong Kong

Personalised recommendations