Advertisement

Mobile Networks and Applications

, Volume 17, Issue 1, pp 29–35 | Cite as

Energy Efficiency Analysis of MISO-OFDM Communication Systems Considering Power and Capacity Constraints

  • Xiaohu GeEmail author
  • Jinzhong Hu
  • Cheng-Xiang Wang
  • Chan-Hyun Youn
  • Jing Zhang
  • Xi Yang
Article

Abstract

In this paper, the energy efficiency of multi-input single-output and orthogonal frequency division multiplexing (MISO-OFDM) communication systems with power and capacity constraints is investigated. By formulating the power allocation problem of MISO-OFDM communication systems, the minimum subchannel transmission power is analyzed with power and capacity constraints. Simulation results indicate that there exists a specific minimum subchannel capacity threshold. Moreover, the energy efficiency of MISO-OFDM communication systems starts to increase only when the minimum subchannel capacity exceeds the specific threshold.

Keywords

multi-input single-output (MISO) orthogonal frequency division multiplexing (OFDM) energy efficiency capacity analysis 

References

  1. 1.
    Cheng X, Wang C-X, Laurenson DI, Salous S, Vasilakos AV (2009) An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Trans Wireless Commun 8(9):4824–4835CrossRefGoogle Scholar
  2. 2.
    Wang C-X, Hong X, Ge X, Cheng X, Zhang G, Thompson JS (2010) Cooperative MIMO channel models: a survey. IEEE Comm Mag 48(2):80–87CrossRefGoogle Scholar
  3. 3.
    Correia LM, Zeller D, Blume O, Ferling D, Jading Y, Gódor I, Auer G, VanDerPerre L (2010) Challenges and enabling technologies for energy aware mobile radio networks. IEEE Comm Mag 48(11):66–72CrossRefGoogle Scholar
  4. 4.
    Chen M, Leung V, Mao S, Xiao Y, Chlamtac I (2009) Hybrid geographical routing for flexible energy-delay trade-offs. IEEE Trans Veh Technol 58(9):4976–4988CrossRefGoogle Scholar
  5. 5.
    Wang C-X, Hong X, Chen H-H, Thompson JS (2009) On capacity of cognitive radio networks with average interference power constraints. IEEE Trans Wireless Commun 8(4):1620–1625CrossRefGoogle Scholar
  6. 6.
    Kolding T, Wigard J, Dalsgaard L (2008) Balancing power saving and single user experience with discontinuous reception in LTE. In Proc. IEEE International Symposium on Wireless Communication Systems. New York, USA, pp. 713–717Google Scholar
  7. 7.
    Humar I, Ge X, Lin X, Jo M, Chen M (2011) Rethinking energy-efficiency models of cellular networks with embodied energy. IEEE Network Magazine, accepted for publicationGoogle Scholar
  8. 8.
    Yang SR, Lin P, Huang PT (2008) Modeling power saving for GAN and UMTS interworking. IEEE Trans Wireless Commun 7(12)Google Scholar
  9. 9.
    Niu Z, Wu Y, Gong J, Yang Z (2010) Cell zooming for cost-efficient green cellular networks. IEEE Commun Mag 48(11):74–79CrossRefGoogle Scholar
  10. 10.
    Miao GW, Himayat N, Li YG, Bormann D (2008) Energy efficient transmission in frequency-selective channels. IEEE Proc Conf GlobeCom 1–5Google Scholar
  11. 11.
    Miao GW, Himayat N, Li GY (2010) Energy-efficient link adaptation in frequency-selective channels. IEEE Trans Commun 58(4):545–554CrossRefGoogle Scholar
  12. 12.
    Rhee W, Cioffi JM (2000) Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In Proc. IEEE Vehic. Tech. Conf., Tokyo, Japan, pp. 1085–1089Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xiaohu Ge
    • 1
    Email author
  • Jinzhong Hu
    • 1
  • Cheng-Xiang Wang
    • 2
  • Chan-Hyun Youn
    • 3
  • Jing Zhang
    • 1
  • Xi Yang
    • 1
  1. 1.Department of Electronics and Information EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Joint Research Institute for Signal and Image Processing, School of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghUK
  3. 3.GRID Middleware Research Center of ICCKorea Advanced Institute of Science and TechnologyTaejonSouth Korea

Personalised recommendations