Mobile Networks and Applications

, Volume 16, Issue 2, pp 171–193 | Cite as

Body Area Networks: A Survey

  • Min Chen
  • Sergio Gonzalez
  • Athanasios VasilakosEmail author
  • Huasong Cao
  • Victor C. M. Leung


Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of networks is paving the way for the deployment of innovative healthcare monitoring applications. In the past few years, much of the research in the area of body area networks has focused on issues related to wireless sensor designs, sensor miniaturization, low-power sensor circuitry, signal processing, and communications protocols. In this paper, we present an overview of body area networks, and a discussion of BAN communications types and their related issues. We provide a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research. We also present a taxonomy of BAN projects that have been introduced/proposed to date. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make BANs truly ubiquitous for a wide range of applications.


wireless sensor networks body area networks survey 



This work was supported in part by the Canadian Natural Sciences and Engineering Research Council through grant STPGP 365208.


  1. 1.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Networks 38(4):393–422CrossRefGoogle Scholar
  2. 2.
    Arvind DK, Bates A (2008) The speckled golfer. In: Proceedings of BodyNets 2008. Tempe, USAGoogle Scholar
  3. 3.
    Baker CR, Armijo K, Belka S, Benhabib M, Bhargava V et al (2007) Wireless sensor networks for home health care. In: International conference on advanced information networking and applications workshops, AINAW’07, pp 832–837Google Scholar
  4. 4.
    Barth A, Wilson S, Hanson M, Powell H, Unluer D, Lach J (2008) Body-coupled communication for body sensor networks. The 3rd international conference on body area networks (BodyNets). Tempe, ArizonaGoogle Scholar
  5. 5.
    Bluecore. Available at:
  6. 6.
    Body Sensor Networks. Available at:
  7. 7.
    Cacioppo JT (2003) Introduction: emotion and health. In: Handbook of affective stress, 1st edn. Oxford University PressGoogle Scholar
  8. 8.
    Cao H, Chow C, Chan H, Leung V (2009) Enabling technologies for wireless body area networks: a survey and outlook. IEEE Wirel Commun Mag 47(12):84–93CrossRefGoogle Scholar
  9. 9.
    Cao H, Gonzalez-Valenzuela S, Leung V (2010) Employing IEEE 802.15.4 for quality of service provisioning in wireless body area sensor networks. In: Proc. IEEE advanced information networking and application, AINA 2010. Perth, AustraliaGoogle Scholar
  10. 10.
    Cobb W (1983) Recommendation for the practice of clinical neurophysiology. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Corchado J, Bajo J, Tapia D, Abraham A (2010) Using heterogeneous wireless sensor networks in a telemonitoring system for healthcare. IEEE Trans Inf Technol Biomed 14(2):234–240CrossRefGoogle Scholar
  12. 12.
    Curtis D, Shih, E, Waterman J, Guttag J, Bailey J et al (2008) Physiological signal monitoring in the waiting areas of an emergency room. In: Proceedings of BodyNets 2008. Tempe, Arizona, USAGoogle Scholar
  13. 13.
    Dam T, Langendoen K (2003) An adaptive energy-efficient mac protocol for wireless sensor networks. In: Proceedings of the first ACM SenSys conference, pp 171–180. Los Angeles, CA, USAGoogle Scholar
  14. 14.
    Dara C, Monetta L, Pell MD (2008) Vocal emotion processing in Parkinson’s disease: reduced sensitivity to negative emotions. Brain Res 1188:100–111CrossRefGoogle Scholar
  15. 15.
    El-Nasr M, Vasilakos A (2008) DigitalBeing—using the environment as an expressive medium for dance. Inf Sci 178:663–678CrossRefGoogle Scholar
  16. 16.
    Farella E, Pieracci A, Benini L, Rocchi L, Acquaviva A (2008) Interfacing human and computer with wireless body area sensor networks: the WiMoCA solution. Multimedia Tools and Applications 38(3):337–363CrossRefGoogle Scholar
  17. 17.
    Felemban E, Lee C-G, Ekici E (2006) MMSPEED: multipath MultiiSPEED protocol for QoS guarantee of reliability and. Timeliness in wireless sensor networks. IEEE Trans Mob Comput 5(6)738–754CrossRefGoogle Scholar
  18. 18.
    Fleury A, Vacher M, Noury N (2010) SVM-based multi-modal classification of activities of daily living in health smart homes: sensors, algorithms and first experimental results. IEEE Trans Inf Technol Biomed 14(2):274–283CrossRefGoogle Scholar
  19. 19.
    Gao T, Massey T, Selavo L, Crawford D, Chen B, Lorincz K, Shnayder V, Hauenstein L, Dabiri F, Jeng J, Chanmugam A, White D, Sarrafzadeh M, Welsh M (2007) The advanced health and disaster aid network: a light-weight wireless medical system for triage. IEEE Trans Biomed Circuits Syst 1(3):203–216CrossRefGoogle Scholar
  20. 20.
    Ghasemzadeh H, Jafari R, Prabhakaran B (2010) A body sensor network with electromyogram and inertial sensors: multi-modal interpretation of muscular activities. IEEE Trans Inf Technol Biomed 14(2):198–206CrossRefGoogle Scholar
  21. 21.
    Gu H, Ji Q (2004) An automated face reader for fatigue detection. In: FGR, pp 111–116Google Scholar
  22. 22.
    Hall PS, Hao Y (2006) Antennas and propagation for body-centric wireless communications. Artech House Publishers, BostonGoogle Scholar
  23. 23.
    Healey JA, Picard RW (2005) Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transp Syst 6(2):156–166CrossRefGoogle Scholar
  24. 24.
    Hoiydi A, Decotignie J, Enz C, Roux E (2003) WiseMAC: an ultra low power MAC protocol for the wisenet wireless sensor networks. In: Proceedings of the first ACM SenSys Conference. Los Angeles, CAGoogle Scholar
  25. 25.
    Hoyt, R.W (0000) SPARNET—Spartan sensor network to improve medical and situational awareness of foot soldiers during field training. Available at:
  26. 26.
    IEEE 802.15 Task Group 6 (BSN). Available at:
  27. 27.
    Jantunen I, Laine H, Huuskonen P, Trossen D, Ermolov V (2004) Smart sensor architecture for mobile-terminal-centric ambient intelligence. Sens Actuators A Phys 142(1):352–360CrossRefGoogle Scholar
  28. 28.
    Jiang S, Cao Y, Lyengar S, Kuryloski P, Jafari R, Xue Y, Bajcsy R, Wicker S (2008) CareNet: an integrated wireless sensor networking environment for remote healthcare. In: Proc. of international conference on body area networks. Tempe, ArizonaGoogle Scholar
  29. 29.
    Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljacic M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834):83–86MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lai C, Huang Y, Park J, Chao H (2010) Adaptive body posture analysis using collaborative multi-sensors for elderly falling detection. IEEE Intell Syst 25(2):20–30CrossRefGoogle Scholar
  31. 31.
    Latr B, Braem B, Moerman I, Blondia C, Reusens E, Joseph W, Demeester P (2007) A low-delay protocol for multihop wireless body area networks. In: Proceedings of mobiquitous. Philadelphia, PAGoogle Scholar
  32. 32.
    Li H, Tan J (2005) An ultra-low-power medium access control protocol for body sensor network. In: Proceedings of IEEE-EMBS. Reading, UKGoogle Scholar
  33. 33.
    Li H, Tan J (2007) Heartbeat driven medium access control for body sensor networks. In: Proceedings of ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments. San Juan, Puerto RicoGoogle Scholar
  34. 34.
    Milenkovic A, Otto C, Jovanov E (2006) Wireless sensor networks for personal health monitoring: issues and an implementation. Comput Commun 29(13–14):2521–2533CrossRefGoogle Scholar
  35. 35.
    Omeni O (2008) A perspective of the BSN MAC. Internet draft, January 11, 2008Google Scholar
  36. 36.
    Patel M, Wang J (2010) Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel Commun Mag 17(1):80–88CrossRefGoogle Scholar
  37. 37.
    Pentland A (2004) Healthwear: medical technology becomes wearable. Computer 37(5):42–49CrossRefGoogle Scholar
  38. 38.
    Picard RW (2001) Affective medicine: technology with emotional intelligence. In: Bushko RG (ed) Future of health technology. OISGoogle Scholar
  39. 39.
    Polastre J, Hill J, Culler D (2004) Versatile low power media access for wireless sensor networks. In: Proceedings of the 2nd ACM SenSys conference, pp 95–107. Baltimore, MD, USAGoogle Scholar
  40. 40.
    Rajendran V, Obraczka K, Garcia-Luna-Aceves J (2003) Energyefficient, collision-free medium access control for wireless sensor networks. In: Proceedings of the first ACM SenSys conference, pp 181–193. Los Angeles, CA, USAGoogle Scholar
  41. 41.
    RFID. Available at:
  42. 42.
    Ruiz JA, Shimamoto S (2006) Novel communication services based on human body and environment interaction: applications inside trains and applications for handicapped people. In: Proc. of the IEEE wireless communications and networking conference, WCNC 2006. Las Vegas, NevadaGoogle Scholar
  43. 43.
    Saeed A, Faezipour M, Nourani M, Tamil LS (2009) Plug-and-play sensor node for body area networks. In: Proceedings of the IEEE-NIH life science systems and applications workshop, (LISSA’09), pp 104–107. Bethesda, Maryland, USAGoogle Scholar
  44. 44.
    Schwiebert L, Gupta SKS, Weinmann J (2001) Research challenges in wireless networks of biomedical sensors. In: Proc. ACM Mobicom’01. Rome, ItalyGoogle Scholar
  45. 45.
    Sensor Node Wiki. Available at:
  46. 46.
    Sheltami T, Mahmoud A, Abu-Amara M (2006) Warning and monitoring medical system using sensor networks. In: The Saudi 18th national computer conference (NCC18), pp 63–68. Riyadh, Saudi ArabiaGoogle Scholar
  47. 47.
    Shnayder V, Chen B, Lorincz K, Fulford-Jones TRF, Welsh M (2005) Sensor networks for medical care. Harvard University Technical Report TR-08-05Google Scholar
  48. 48.
    Smeaton AF, Diamond D et al (2008) Aggregating multiple body sensor for analysis in sports. In: International workshop on wearable micro and nanosystems for personalised health—pHealth. Valencia, SpainGoogle Scholar
  49. 49.
    Takeda K, Hansen JH, L, Erdogan H, Abut H (2009) In-vehicle corpus and signal processing for driver behavior. SpringerGoogle Scholar
  50. 50.
    Takizawa K, Aoyagi T, Kohno R (2009) Channel modeling and performance evaluation of uwb-based wireless body area networks. In: Proc. of the IEEE international conference on communications, ICC 2009. Dresden, GermanyGoogle Scholar
  51. 51.
    Taleb T, Bottazzi D, Nasser N (2010) A novel middleware solution to improve ubiquitous healthcare systems aided by affective information. IEEE Trans Inf Technol Biomed 14(2):335–349CrossRefGoogle Scholar
  52. 52.
    Taparugssanagorn A, Rabbachin A, Hamalainen M, Saloranta J, Iinatti J (2008) A review of channel modelling for wireless body area network in wireless medical communications. In: The 11th international symposium on wireless personal multimedia communications. Saariselka, FinlandGoogle Scholar
  53. 53.
    TinyOS for wireless embedded sensor networks. Available at:
  54. 54.
    US Bureau of the Census (2000) Population projections of the United States by age, sex, race and Hispanic origin: 1995–2050, Current Population Reports, P25-1130Google Scholar
  55. 55.
    Warren S, Jovanov E (2006) The need for rules of engagement applied to wireless body area networks. In: Proc. of the IEEE consumer communications and networking conference, CCNC 2006. Las Vegas, NevadaGoogle Scholar
  56. 56.
    WLAN Interference to IEEE802.15.4. Available at: Retrieved on 2007-11-22
  57. 57.
    Wood A, Virone G, Doan T, Cao Q, Selavo L, Wu Y, Fang L, He Z, Lin S, Stankovic J (2006) ALARM-NET: wireless sensor networks for assisted-living and residential monitoring. Technical Report CS-2006-11, Department of Computer Science, University of VirginiaGoogle Scholar
  58. 58.
    Xu PJ, Zhang H, Tao XM (2008) Textile-structured electrodes for electrocardiogram. Text Prog 40(4):183–213CrossRefGoogle Scholar
  59. 59.
    Yazdandoost K, Sayrafian-Pour K (2009) Channel model for body area network (BSN). Doc. # IEEE P802.15-08-0780-06-0006. Available online at
  60. 60.
    Ye W, Heidemann J (2005) SCP-MAC: reaching ultra-low duty cycles (poster). In: IEEE SECON’05. Santa Clara, CA, USAGoogle Scholar
  61. 61.
    Ye W, Heidemann J, Estrin D (2004) Medium access control with coordinated, adaptive sleeping for wireless sensor networks. IEEE/ACM Trans Netw 3(12):493–506CrossRefGoogle Scholar
  62. 62.
    Younis M, Akkaya K et al (2004) On handling QoS traffic in wireless sensor networks. In: Proceedings of the 37th annual Hawaii international conference on system sciences. HawaiiGoogle Scholar
  63. 63.
    Yu J-Y, Liao W-C, Lee C-Y (2006) A MT-CDMA based wireless body area network for ubiquitous healthcare monitoring. In: Proc. IEEE biomedical circuits and systems conference, BioCAS 2006, pp 98–101Google Scholar
  64. 64.
    Zhang YP, Bin L, Qi C (2007) Characterization of on-human-body UWB radio propagation channel. Microw Opt Technol Lett 49(6):1365–1371CrossRefGoogle Scholar
  65. 65.
    Zhang Z, Zhang JS (2006) Driver fatigue detection based intelligent vehicle control. In: Proceedings of the 18th IEEE international conference on pattern recognition, ICPR’06, pp 1262–1265. Washington, DCGoogle Scholar
  66. 66.
    Zhen B, Patel M, Lee S, Won E, Astrin A (2008) TG6 technical requirements document (TRD) IEEE P802.15-08-0644-09-0006.
  67. 67.
    Zhou G, Liu J, Wan C, Yarvis M, Stankovic J (2008) BodyQoS: Adaptive and radio-agnostic QoS for body sensor networks. In: Proceedings of IEEE INFOCOM. Phoenix, USAGoogle Scholar
  68. 68.
    ZigBee Specification. Available at: Retrieved on 2008-03-18
  69. 69.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Min Chen
    • 1
    • 2
  • Sergio Gonzalez
    • 1
  • Athanasios Vasilakos
    • 3
    Email author
  • Huasong Cao
    • 1
  • Victor C. M. Leung
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of British ColumbiaVancouverCanada
  2. 2.School of Computer Science and EngineeringSeoul National UniversitySeoulSouth Korea
  3. 3.Department of Computer and Telecommunications EngineeringUniversity of Western MacedoniaMacedoniaGreece

Personalised recommendations