Mobile Networks and Applications

, Volume 15, Issue 6, pp 819–830 | Cite as

The Feasibility of Navigation Algorithms on Smartphones using J2ME

  • André C. SantosEmail author
  • Luís Tarrataca
  • João M. P. Cardoso


Embedded systems are considered one of the areas with more potential for future innovations. Two embedded fields that will most certainly take a primary role in future innovations are mobile robotics and mobile computing. Mobile robots and smartphones are growing in number and functionalities, becoming a presence in our daily life. In this paper, we study the current feasibility of a smartphone to execute navigation algorithms and provide autonomous control, e.g., for a mobile robot. We tested four navigation problems: Mapping, Localization, Simultaneous Localization and Mapping, and Path Planning. We selected representative algorithms for the navigation problems, developed them in J2ME, and performed tests on the field. Results show the current mobile Java capacity for executing computationally demanding algorithms and reveal the real possibility of using smartphones for autonomous navigation.


navigation algorithms visual landmark recognition particle filter extended kalman filter potential fields smartphones J2ME 



We would like to acknowledge the donations of smartphones by the Nokia Corporation. A special thanks to Vanderlei Bonato for making available the C code of the EKF implementation.


  1. 1.
    Baczyk R, Kasinski A, Skrzypczynski P (2003) Vision-based mobile robot localization with simple artificial landmarks. In: Prepr. 7th IFAC symp. on robot control, Wroclaw, pp 217–222Google Scholar
  2. 2.
    Bonato V, Peron R, Wolf D, de Holanda J, Marques E, Cardoso J (2007) An fpga implementation for a kalman filter with application to mobile robotics. In: Industrial embedded systems, 2007. SIES ’07. International symposium on, pp 148–155. doi:10.1109/SIES.2007.4297329
  3. 3.
    Bruce J, Balch T, Veloso M (2000) Fast and inexpensive color image segmentation for interactive robots. In: Proceedings of the 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS ’00), vol. 3, pp 2061–2066Google Scholar
  4. 4.
    Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, ItalyGoogle Scholar
  5. 5.
    Fox D (1998) Markov localization: a probabilistic framework for mobile robot localization and navigation. PhD thesis, Institute of Computer Science III, University of Bonn, GermanyGoogle Scholar
  6. 6.
    Goodrich MA (2002) Potential fields tutorial. Class NotesGoogle Scholar
  7. 7.
    Gordon N, Salmond D, Smith A (1993) Novel approach to nonlinear/non-gaussian bayesian state estimation. IEE Proc F Radar Signal Process 140(2):107–113CrossRefGoogle Scholar
  8. 8.
    Jang G, Lee S, Kweon I (2002) Color landmark based self-localization for indoor mobile robots. In: Robotics and automation, 2002. Proceedings. ICRA ’02. IEEE international conference on, vol. 1, pp 1037–1042Google Scholar
  9. 9.
    Kalman RE (1960) A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82(Series D):35–45Google Scholar
  10. 10.
    Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Rob Res 5(1):90–98CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kim JO, Khosla P (1992) Real-time obstacle avoidance using harmonic potential functions. IEEE Trans Robot Autom 8(3):338–349CrossRefGoogle Scholar
  12. 12.
    Lee, L.F.: Decentralized motion planning within an artificial potential framework (apf) for cooperative payload transport by multi-robot collectives. Master’s thesis, Department of Mechanical and Aerospace Engineering (2004)Google Scholar
  13. 13.
    Leonard JJ, Durrant-Whyte HF (1991) Mobile robot localization by tracking geometric beacons. IEEE Trans Robot Autom 7(3):376–382CrossRefGoogle Scholar
  14. 14.
    Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol 2, pp 1150–1157Google Scholar
  15. 15.
    Matarić MJ (2007) The robotics primer, 1st edn. MIT Press, Cambridge, MAGoogle Scholar
  16. 16.
    Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) Fastslam: a factored solution to the simultaneous localization and mapping problemGoogle Scholar
  17. 17.
    Park MG, Lee MC (2003) Artificial potential field based path planning for mobile robots using a virtual obstacle concept. In: Proceedings of the 2003 IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2003), vol. 2, pp 735–740Google Scholar
  18. 18.
    Prasser D, Wyeth G (2003) Probabilistic visual recognition of artificial landmarks for simultaneous localization and mapping. In: Proceedings of the 2003 IEEE international conference on robotics and automation, vol. 1, pp 1291–1296Google Scholar
  19. 19.
    Rekleitis I (2003) Cooperative localization and multi-robot exploration. PhD thesis, School of Computer Science, McGill University, MontréalGoogle Scholar
  20. 20.
    Se S, Lowe D, Little J (2001) Vision-based mobile robot localization and mapping using scale-invariant features. In: Robotics and automation, 2001. Proceedings6 2001 ICRA. IEEE international conference on, vol. 2, pp 2051–2058Google Scholar
  21. 21.
    Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships in robotics. In: Autonomous robot vehicles. Springer-Verlag, New York, pp 167–193Google Scholar
  22. 22.
    Solórzano J, Bagnall B, Stuber J, Andrews P (2008) lejos: Java for lego mindstorms. (last visited in June 2008)
  23. 23.
    Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT PressGoogle Scholar
  24. 24.
    Tierno J, Campo C (2005) Smart camera phones: limits and applications. IEEE Pervasive Computing 4:84–87CrossRefGoogle Scholar
  25. 25.
    Veelaert P, Bogaerts W (1999) Ultrasonic potential field sensor for obstacle avoidance. IEEE Trans Robot Autom 15(4):774–779CrossRefGoogle Scholar
  26. 26.
    Volpe R, Khosla P (1990) Manipulator control with superquadratic artificial potential functions: theory and experiments. IEEE Trans Syst Man Cybern 20(6):1423–1436CrossRefGoogle Scholar
  27. 27.
    Welch G, Bishop G (2006) An introduction to the kalman filter. Tech. rep., Department of Computer Science, University of North Carolina at Chapel Hill, USAGoogle Scholar
  28. 28.
    Yoon KJ, Jang GJ, Kim SH, Kweon IS (2001) Fast landmark tracking and localization algorithm for the mobile robot self-localization. In: IFAC workshop on mobile robot technology, pp 190–195Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • André C. Santos
    • 1
    Email author
  • Luís Tarrataca
    • 1
  • João M. P. Cardoso
    • 2
  1. 1.IST - Technical University of LisbonPorto SalvoPortugal
  2. 2.Departamento de Engenharia Informática, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations