Advertisement

Mobile Networks and Applications

, Volume 15, Issue 2, pp 237–252 | Cite as

Resource Management Strategies for the Mobile Web

  • Claudia Canali
  • Michele Colajanni
  • Riccardo Lancellotti
Article
  • 126 Downloads

Abstract

The success of the Mobile Web is driven by the combination of novel Web-based services with the diffusion of advanced mobile devices that require personalization, location-awareness and content adaptation. The evolutionary trend of the Mobile Web workload places unprecedented strains on the server infrastructure of the content provider at the level of computational and storage capacity, to the extent that the technological improvements at the server and client level may be insufficient to face some resource requirements of the future Mobile Web scenario. This paper presents a twofold contribution. We identify some performance bottlenecks that can limit the performance of future Mobile Web, and we propose and evaluate novel resource management strategies. They aim to address computational requirements through a pre-adaptation of the most popular resources even in the presence of irregular access patterns and short resource lifespan that will characterize the future Mobile Web. We investigate a large space of alternative workload scenarios. Our analysis allows to identify when the proposed resource management strategies are able to satisfy the computational requirements of future Mobile Web, and even some conditions where further research is necessary.

Keywords

Mobile Web multimedia resources content adaptation performance evaluation server infrastructure 

References

  1. 1.
    Andreolini M, Casolari S, Colajanni M (2008) Models and framework for supporting runtime decisions in web-based systems. ACM Trans Web 2(3):1–43CrossRefGoogle Scholar
  2. 2.
    Baryshnikov Y, Coffman E, Pierre G, Rubenstein D, Squillante M, Yimwadsana T (2005) Predictability of web-server traffic congestion. In: Proceedings of the 10th international workshop on web content caching and distribution (WCW 2005)Google Scholar
  3. 3.
    Basseville M, Nikiforov I (1993) Detection of abrupt changes: theory and application. Prentice-Hall, Englewood CliffsGoogle Scholar
  4. 4.
    Berg Insight AB (2007) Mobile internet 2.0. Research reportGoogle Scholar
  5. 5.
    Brockwell PJ, Davis RA (2001) Introduction to time series and forecasting. Springer, New YorkGoogle Scholar
  6. 6.
    Buchholz S, Buchholz T (2004) Replica placement in adaptive content distribution networks. In: Proc. of the 2004 ACM symposium on applied computing (SAC’04)Google Scholar
  7. 7.
    Canali C, Cardellini V, Lancellotti R (2006) Content adaptation architectures based on squid proxy server. World Wide Web J 9(1):63–92CrossRefGoogle Scholar
  8. 8.
    Canali C, Colajanni M, Lancellotti R (2008) Resource management strategies for Mobile Web-based services. In: Proc. of 4th IEEE international conference on wireless and mobile computing (WIMOB’08)Google Scholar
  9. 9.
    Canali C, Colajanni M, Lancellotti R (2009) Performance evolution of mobile-web based services. IEEE Internet Computing 13:60–68CrossRefGoogle Scholar
  10. 10.
    Cha M, Kwak H, Rodriguez P, Ahn YY, Moon S (2007) I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. In: Proc. of the 7th ACM SIGCOMM conference on internet measurement (IMC’07), San DiegoGoogle Scholar
  11. 11.
    Chandra S, Gehani A, Ellis CS, Vahdat A (2001) Transcoding characteristics of web images. In: Proceedings. of multimedia computing and networking (MMCN’01), San JoseGoogle Scholar
  12. 12.
    Chang CY, Chen MS (2003) On exploring aggregate effect for efficient cache replacement in transcoding proxies. IEEE Trans Parallel Distrib Syst 14:611–624CrossRefGoogle Scholar
  13. 13.
    Comcast (2008) Comcast announces more than 1,000 HD choices available the most HD content anytime, anywhere. Press releaseGoogle Scholar
  14. 14.
    Cortes C, Vapnik V (1995) Support-vector networks. J Mach Learn 20(3):273–297zbMATHGoogle Scholar
  15. 15.
    Crovella ME, Bestavros A (1997) Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans Netw 5(6):835–846CrossRefGoogle Scholar
  16. 16.
    Duarte F, Mattos B, Bestavros A, Almeida V, Almeida J (2007) Traffic characteristics and communication patterns in blogosphere. In: Proc. of international conference on weblogs and social media, SeattleGoogle Scholar
  17. 17.
    Flesca S, Greco S, Tagarelli A, Zumpano E (2005) Mining user preferences, page content and usage to personalize website navigation. World Wide Web 8(3):317–345CrossRefGoogle Scholar
  18. 18.
    Gartner (2007) Mobile Web trends 2007 to 2011. Research reportGoogle Scholar
  19. 19.
    Gill P, Arlitt M, Li Z, Mahanti A (2007) YouTube traffic characterization: a view from edge. In: Proc. of internet measurement conference (IMC’07)Google Scholar
  20. 20.
    Grochowski E, Halem RD (2003) Technological impact of magnetic hard disk drives on storage systems. IBM Syst J 42(2):205–217CrossRefGoogle Scholar
  21. 21.
    Guo L, Chen S, Xiao Z, Zhang X (2005) Analysis of multimedia workloads with implications for internet streaming. In: WWW ’05: proc. of the 14th international conference on world wide webGoogle Scholar
  22. 22.
    Iaccarino G, Malandrino D, Percio MD, Scarano V (2006) Efficient edge-services for colorblind users. In: Poster proc. of WWW 2006Google Scholar
  23. 23.
    iAnywhere Inc. (2005) AvantGo. http://www.avantgo.com/
  24. 24.
    Juniper Research (2007) Mobile user generated content—dating, social networking and personal content delivery 2007–2012. Research reportGoogle Scholar
  25. 25.
    Karlsson M (2005) Replica placement and request routing. In: Tang, Xu, Chanson (eds) Web content delivery. Springer, New YorkGoogle Scholar
  26. 26.
    e Marketer (2008) Everyone is talking about mobile social networking. Research reportGoogle Scholar
  27. 27.
    OMNeT+ + discrete event simulation system (2008) http://www.omnetpp.org
  28. 28.
    Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgezbMATHGoogle Scholar
  29. 29.
    Rabinovich M, Spatscheck O (2002) Web caching and replication. Addison Wesley, ReadingGoogle Scholar
  30. 30.
    Rodriguez J, Dakar B, Marras FL, Schreder C, Suzuki S, Tapera E (2001) New capabilities in IBM websphere transcoding publisher version 3.5 extending web applications to the pervasive world. IBM RedBooksGoogle Scholar
  31. 31.
    Sang A, Li SQ (2000) A predictability analysis of network traffic. In: Proc. of the 9th annual joint conference of the IEEE computer and communications societies (INFOCOM)Google Scholar
  32. 32.
    Singh G (2004) Guest editor’s introduction: content repurposing. IEEE Multimed 11(1):20–21CrossRefGoogle Scholar
  33. 33.
    Sivasubramanian S, Pierre G, van Steen M, Alonso G (2007) Analysis of caching and replication strategies for web applications. IEEE Intell Syst 11(1):60–66Google Scholar
  34. 34.
    Spooner JT, Ordonez R, Maggiore M, Passino KM (2001) Stable adaptive control and estimation for nonlinear systems: neural and fuzzy approximation techniques. Wiley, New YorkGoogle Scholar
  35. 35.
    Sung HH (2002) Helping online customers decide through web personalization. Inf Sci 17(6):34–43Google Scholar
  36. 36.
    Tan W, Chan E, Zalchor A (1996) Real time software implementation of scalable video codec. In: Proceedings of international conference on image processing, LausanneGoogle Scholar
  37. 37.
    Williams A, Arlitt M, Williamson C, Barker K (2005) Web workload characterization: ten years later. In: Tang, Xu, Chanson (eds) Web content delivery. Springer, New YorkGoogle Scholar
  38. 38.
    Yamakami T (2006) A zipf-like distribution of popularity and hits in the Mobile Web pages with short life time. In: Proc. of the international conference on parallel and distributed computing, applications and technologies (PDCAT’06), TaipeiGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Claudia Canali
    • 1
  • Michele Colajanni
    • 1
  • Riccardo Lancellotti
    • 1
  1. 1.Department of Information EngineeringUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations