Mobile Networks and Applications

, Volume 14, Issue 3, pp 309–321 | Cite as

Minimal Energy Path Planning for Wireless Robots

Article

Abstract

In this paper, the problem of optimizing energy for communication and motion is investigated. We consider a single mobile robot with continuous high bandwidth wireless communication, e.g. caused by a multimedia application like video surveillance. This robot is connected to radio base station(s), and moves with constant speed from a given starting point on the plane to a target point. The task is to find the best path such that the energy consumption for mobility and the communication is optimized. This is motivated by the fact that the energy consumption of radio devices increases polynomially (at least to the power of two) with the transmission distance. We introduce efficient approximation algorithms to find the optimal path given the starting point, the target point and the position of the radio stations. We exemplify the influence of the communication cost by a starting scenario with one radio station. We study the performance of the proposed algorithm in simulation, compare it with the scenario without applying our approach, and present the results.

Keywords

networked robots optimal energy path planning wireless communications cost mobility cost 

References

  1. 1.
    Swarm-bots Project (2005) The European Commission (IST-2000-31010). http://www.swarm-bots.org. Accessed 16 Jan 2009
  2. 2.
    e-puck Education Robot Project (2009) Ecole Polytechnique Federale de Lausanne (EPFL). http://www.e-puck.org. Accessed 16 Jan 2009
  3. 3.
    Khepera Robots (2008) K-Team Corporation. http://www.k-team.com. Accessed 16 Jan 2009
  4. 4.
    Akyildiz IF, Melodia T, Chowdhury KR (2007) A survey on wireless multimedia sensor networks. Comput Networks 51(4):921–960. doi:10.1016/j.comnet.2006.10.002 CrossRefGoogle Scholar
  5. 5.
    Anh Tuan Hoang MM (2005) Exploiting wireless broadcast in spatially correlated sensor networks. In: IEEE ICC, pp 2807– 2811Google Scholar
  6. 6.
    Capkun S, Hubaux JP, Buttyán L (2003) Mobility helps security in ad hoc networks. In: Proceedings of the 4th ACM MobiHoc, pp 46–56Google Scholar
  7. 7.
    Das SM, Hu YC, Lee CG, Lu YH (2005) An efficient group communication protocol for mobile robots. In: IEEE ICRAGoogle Scholar
  8. 8.
    Goldenberg DK, Lin J, Morse AS, Rosen BE, Yang YR (2004) Towards mobility as a network control primitive. In: Proceedings of the 5th ACM MobiHoc. ACM Press, New York, NY, USA, pp 163–174. doi:10.1145/989459.989481 CrossRefGoogle Scholar
  9. 9.
    Grossglauser M, Tse DNC (2002) Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans Netw 10(4):477–486. doi:10.1109/TNET.2002.801403 CrossRefGoogle Scholar
  10. 10.
    Gruenewald M, Rueckert U, Schindelhauer C, Volbert K (2003) Directed power-variable infrared communication for the mini robot khepera. In: Proceedings of the 2nd International conference on autonomous minirobots for research and edutainment, pp 113–122Google Scholar
  11. 11.
    Koutsonikolas D, Das SM, Hu YC, Lu YH, Lee CSG (2006) Cocoa: coordinated cooperative localization for mobile multi-robot ad hoc networks. In: Proceedings of the 26th IEEE ICDCSW. IEEE computer society, Washington, DC, USA, p 9. doi:10.1109/ICDCSW.2006.30 Google Scholar
  12. 12.
    Labella TH, Fuchs G, Dressler F (2006) A simulation model for self-organised management of sensor/actuator networks. In: GI/ITG KuVS Fachgespr”ach Selbstorganisierende, Adaptive, Kontextsensitive verteilte Systeme (SAKS)Google Scholar
  13. 13.
    Li XY, Wan PJ (2001) Constructing minimum energy mobile wireless networks. ACM Mobile Comp Commun Rev 5(4):55–67CrossRefGoogle Scholar
  14. 14.
    Liu B, Brass P, Dousse O, Nain P, Towsley D (2005) Mobility improves coverage of sensor networks. In: Proceedings of the 6th ACM MobiHoc, pp 300–308Google Scholar
  15. 15.
    Lucent Technologies (2000) Orinoco PC cardGoogle Scholar
  16. 16.
    Mei Y, Lu YH, Hu YC, Lee C (2005) A case study of mobile robot’s energy consumption and conservation techniques. In: 12th IEEE ICAR, pp 492–497Google Scholar
  17. 17.
    Meyer auf der Heide F, Schindelhauer C, Volbert K, Grünewald M (2004) Congestion, dilation, and energy in radio networks. TOCS 37(3):343–370MATHGoogle Scholar
  18. 18.
    Powers M, Balch T, Lab B (2004) Value-based communication preservation for mobile robots. In: IEEE ICRAGoogle Scholar
  19. 19.
    Rodoplu V, Meng T (1998) Minimum energy mobile wireless networks. In: Proceedings of IEEE ICC, vol 3, pp 1633–1639Google Scholar
  20. 20.
    Schaubach K, Davis NJ, Rappaport T (1992) A ray tracing method for predicting path loss and delay spread in microcellular environment. In: Proceedings of IEEE 42nd vehicular technology conference. IEEE, pp 932–935Google Scholar
  21. 21.
    Tang C, McKinley PK (2006) Energy optimization under informed mobility. IEEE Trans Parallel Distrib Syst 17(9):947–962. doi:10.1109/TPDS.2006.122 CrossRefGoogle Scholar
  22. 22.
    Tipler PA (1991) Physics for scientists and engineers. Worth, New YorkGoogle Scholar
  23. 23.
    Tseng YC, Wang YC, Cheng KY, Hsieh YY (2007) Imouse: an integrated mobile surveillance and wireless sensor system. Computer 40:60–66CrossRefGoogle Scholar
  24. 24.
    Zeng QA, Agrawal DP (2002) Handoff in wireless mobile networks. In: Handbook of wireless networks and mobile computing, pp 1–25Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceFreiburgGermany

Personalised recommendations