Mobility-aware Management of Internet Connectivity in Always Best Served Wireless Scenarios

  • Paolo Bellavista
  • Antonio Corradi
  • Carlo Giannelli


The widespread availability of portable devices with multiple wireless interfaces, e.g., IEEE 802.11, WiMAX, Bluetooth, and/or UMTS, is leveraging the potential of novel supports to seamlessly and automatically select the proper connectivity technology to exploit at any time for any node and any running application. That selection should be context-dependent and take into account several aspects, at very different abstraction layers, from application-specific bandwidth requirements to expected client mobility, from user preferences to energy consumption. We claim the suitability of mobility-aware middlewares to relieve the application logic from the burden of determining the most suitable interface and connectivity provider for each client/application at service provisioning time. In particular, the paper motivates the need for novel context indicators, e.g., client/connector relative mobility, and describes effective lightweight solutions to estimate them flexibly, depending on dynamically introduced evaluation metrics. The paper presents primary architecture and implementation guidelines to build such a novel middleware solution. The proposed middleware has been experimentally validated and the reported performance results demonstrate the feasibility of the approach: it achieves accurate estimations of node mobility and consequently performs connection establishment/selection with very limited overhead.


middleware mobile computing internet connectivity wireless communications always best connected 


  1. 1.
    ETSI (2001) Requirements and architectures for interworking between HIPERLAN/3 and 3rd generation cellular systems. Tech. rep. ETSI TR 101:957Google Scholar
  2. 2.
    Skehill R, Barry M, Kent W, O’Callaghan M, Gawley N, McGrath S (2007) The common RRM approach to admission control for converged heterogeneous wireless networks. IEEE Wirel Commun 14(2):48–56 doi:10.1109/MWC.2007.358964 CrossRefGoogle Scholar
  3. 3.
    3GPP (2002) Feasibility study on 3GPP system to WLAN interworking. Tech. rep. 3GPP TR 22.934 v1.2.0Google Scholar
  4. 4.
    Chen J-C, Lin H-W (2005) A gateway approach to mobility integration of GPRS and wireless LANs. IEEE Wirel Commun 12(2):86–95 doi:10.1109/MWC.2005.1421932 CrossRefGoogle Scholar
  5. 5.
    Buddhikot MM, Chandranmenon G, Han S, Lee Y-W, Miller S, Salgarelli L (2003) Design and implementation of a WLAN/cdma2000 interworking architecture. IEEE Commun Mag 41(11):90–100 doi:10.1109/MCOM.2003.1244928 CrossRefGoogle Scholar
  6. 6.
    Bernaschi M, Cacace F, Iannello G, Za S, Pescape A (2005) Seamless internetworking of WLANs and cellular networks: architecture and performance issues in a mobile IPv6 scenario. IEEE Wirel Commun 12(3):73–80 doi:10.1109/MWC.2005.1452857 CrossRefGoogle Scholar
  7. 7.
    Lera A, Molinaro A, Polito S, Ruggeri G (2005) End-to-end QoS provisioning in 4G with mobile hotspots. IEEE Netw 19(5):26–34 doi:10.1109/MNET.2005.1509949 CrossRefGoogle Scholar
  8. 8.
    Salkintzis AK, Fors C, Pazhyannur R (2002) WLAN-GPRS integration for next-generation mobile data networks. IEEE Wirel Commun 9(5):112–124 doi:10.1109/MWC.2002.1043861 CrossRefGoogle Scholar
  9. 9.
    Stemm M, Katz RH (1998) Vertical handoffs in wireless overlay networks. Mob Netw Applications (Baltzer) 3:335–350 (Dec) doi:10.1023/A:1019197320544 CrossRefGoogle Scholar
  10. 10.
    Bing H, He C, Jiang L (2003) Performance analysis of vertical handover in a UMTS-WLAN integrated network. 14th IEEE Personal, Indoor and Mobile Radio Communications, Beijing, China, Sept. 2003, pp 187–191Google Scholar
  11. 11.
    Hou J, O’Brien DC (2006) Vertical handover-decision-making algorithm using fuzzy logic for the integrated radio-and-OW system. IEEE Trans Wirel Commun 5(1):176–185 doi:10.1109/TWC.2006.1576541 CrossRefGoogle Scholar
  12. 12.
    Song W, Jiang H, Zhuang W, Shen X (2005) Resource management for QoS support in cellular/WLAN interworking. IEEE Netw 19(5):12–18 doi:10.1109/MNET.2005.1509947 CrossRefGoogle Scholar
  13. 13.
    Pack S, Shen X, Mark JW, Pan J (2007) Mobility management in mobile hotspots with heterogeneous multihop wireless links. IEEE Commun Mag 45(9):106–112 doi:10.1109/MCOM.2007.4342864 CrossRefGoogle Scholar
  14. 14.
    Politis C, Chew KA, Akhtar N, Georgiades M, Tafazolli R, Dagiuklas T (2004) Hybrid multilayer mobility management with AAA context transfer capabilities for all-IP networks. IEEE Wirel Commun 11(4):76–88 doi:10.1109/MWC.2004.1325894 CrossRefGoogle Scholar
  15. 15.
    Wang Q, Abu-Rgheff A (2006) Mobility management architectures based on joint mobile IP and SIP protocols. IEEE Wirel Commun 13(6):68–76 doi:10.1109/MWC.2006.275201 CrossRefGoogle Scholar
  16. 16.
    Wei Lee C, Chen LM, Chen MC, Sun YS (2005) A frame-work of handoffs in wireless overlay networks based on mobile IPv6. IEEE J Sel Areas Commun 23(11):2118–2128 doi:10.1109/JSAC.2005.856833 CrossRefGoogle Scholar
  17. 17.
    Nursimloo DS, Chan HA (2005) Integrating fast mobile IPv6 and SIP in 4G network for real-time mobility. 13th IEEE Int. Conf. Networks, Kuala Lumpur, Malaysia, Nov. 2005, pp 917–922Google Scholar
  18. 18.
    Wei Wu N, Banerjee KB, Das SK (2005) SIP-based vertical handoff between WWANs and WLANs. IEEE Wirel Commun 12(3):66–72 doi:10.1109/MWC.2005.1452856 CrossRefGoogle Scholar
  19. 19.
    Sarikaya B (2006) Home agent placement and IP address management for integrating WLANs with cellular networks. IEEE Wirel Commun 13(6):77–86 doi:10.1109/MWC.2006.275202 CrossRefGoogle Scholar
  20. 20.
    Ylitalo J, Jokikyyny T, Kauppinen T, Tuominen AJ, Laine J (2003) Dynamic network interface selection in multihomed mobile hosts. 36th Hawaii Int. Conf. System Sciences, Hawaii, HI, Jan. 2003Google Scholar
  21. 21.
    Fracchia R, Casetti C, Chiasserini CF, Meo M (2007) WiSE: best-path selection in wireless multihoming environments. IEEE Trans Mob Comput 6(10):1130–1141 doi:10.1109/TMC.2007.1027 CrossRefGoogle Scholar
  22. 22.
    Chebrolu K, Rao RR (2006) Bandwidth aggregation for real-time applications in heterogeneous wireless networks. IEEE Trans Mob Comput 5(4):388–403 doi:10.1109/TMC.2006.1599407 CrossRefGoogle Scholar
  23. 23.
    Kristiansson J, Parnes P (2006) An application-layer approach to seamless mobile multimedia communication. IEEE eTrans Netw Serv Manage 3(1):33–42 JanCrossRefGoogle Scholar
  24. 24.
    Xing B, Venkatasubramanian N (2005) Multi-constraint dynamic access selection in always best connected networks. 2nd Int. Conf. Mobile and Ubiquitous Systems: Networking and Services, San Diego, CA, July 2005, pp 56–64Google Scholar
  25. 25.
    Yi Pan M, Lee JBK, Suda T (2004) An end-to-end multi-path smooth handoff scheme for stream media. IEEE J Sel Areas Commun 22(4):653–663 doi:10.1109/JSAC.2004.825998 CrossRefGoogle Scholar
  26. 26.
    Perkins C (2002) IP Mobility Support for IPv4. Internet proposed standard RFC3344, AugGoogle Scholar
  27. 27.
    Johnson DB, Perkins C. Route optimization in mobile IP. Internet draft draft-ietf-mobileip-optim-11Google Scholar
  28. 28.
    Wei H-Y, Gitlin RD (2004) Two-hop-relay architecture for next-generation WWAN/WLAN integration. IEEE Wirel Commun 11(2):24–30 doi:10.1109/MWC.2004.1295734 CrossRefGoogle Scholar
  29. 29.
    Le L, Hossain E (2007) Multihop cellular networks: potential gains, research challenges, and a resource allocation framework. IEEE Commun Mag 45(9):66–73 doi:10.1109/MCOM.2007.4342859 CrossRefGoogle Scholar
  30. 30.
    Lam PP, Liew SC (2007) Nested network mobility on the multihop cellular network. IEEE Commun Mag 45(9):100–104 doi:10.1109/MCOM.2007.4342863 CrossRefGoogle Scholar
  31. 31.
    Luo H, Ramjee R, Sinha P, Li LE, Lu S (2003) UCAN: a unified cellular and ad-hoc network architecture. 9th Int. Conf. Mobile Computing and Networking, San Diego, CA, Sept. 2003, pp 353–367Google Scholar
  32. 32.
    Frattasi S, Fathi H, Gimmler A, Fitzek FHP, Prasad R (2006) Designing socially robust 4G wireless services. IEEE Technol Soc Mag 25(2):51–64 doi:10.1109/MTAS.2006.1649030 CrossRefGoogle Scholar
  33. 33.
    Kang S-S, Mutka MW (2005) A mobile peer-to-peer approach for multimedia content sharing using 3G/WLAN dual mode channels. Wiley J Wirel Commun Mob Comput 5(6):633–645 doi:10.1002/wcm.332 CrossRefGoogle Scholar
  34. 34.
    Fu C, Khendek F, Glitho R (2006) Signaling for multimedia conferencing in 4G: the case of integrated 3G/MANETs. IEEE Commun Mag 44(8):90–99 doi:10.1109/MCOM.2006.1678115 CrossRefGoogle Scholar
  35. 35.
    Ghini V, Salomoni P, Pau G (2005) Always-best-served music distribution for nomadic users over heterogeneous net-works. IEEE Commun Mag 43(5):69–74 doi:10.1109/MCOM.2005.1453425 CrossRefGoogle Scholar
  36. 36.
    Bellavista P, Corradi A, Giannelli C (2007) Mobility-aware connectivity for seamless multimedia delivery in the heterogeneous wireless internet. 2nd Work. on multiMedia Applications over Wireless Networks (MediaWiN 07), Aveiro, Portugal, July 2007Google Scholar
  37. 37.
    Shenoy N, Montalvo R (2005) A framework for seamless roaming across cellular and wireless local area networks. IEEE Wirel Commun 12(3):50–57 doi:10.1109/MWC.2005.1452854 CrossRefGoogle Scholar
  38. 38.
    Bellavista P, Corradi A, Giannelli C (2005) Mobile proxies for proactive buffering in wireless internet multimedia streaming. IEEE Int. Conf. Distributed Computing Systems (ICDCS) Workshops, pp. 297–304, June 2005Google Scholar
  39. 39.
    Bellavista P, Corradi A, Giannelli C (2005) Adaptive buffering based on handoff prediction for wireless internet continuous services. Int. Conf. High Performance Computing and Communications (HPCC). LNCS 3726:1021–1032Google Scholar
  40. 40.
    Bellavista P, Corradi A, Giannelli C (2008) A layered infrastructure for mobility-aware best connectivity in the heterogeneous wireless internet. 1st Int. Conf. on MOBILe Wireless MiddleWARE, Operating Systems, and Applications (Mobilware 2008), Innsbruck, Austria, Feb. 2008Google Scholar
  41. 41.
    Mobility-Aware Connectivity Project.
  42. 42.
    Ferro E, Potorti F (2005) Bluetooth and Wi-Fi wireless protocols: a survey and a comparison. IEEE Wirel Commun 12(1):12–26 doi:10.1109/MWC.2005.1404569 CrossRefGoogle Scholar
  43. 43.
    Peterson BS, Baldwin RO, Kharoufeh JP (2006) Bluetooth inquiry time characterization and selection. IEEE Trans Mob Comput 5(9):1173–1187 doi:10.1109/TMC.2006.125 CrossRefGoogle Scholar
  44. 44.
    Bellavista P, Corradi A, Foschini L (2007) Context-aware handoff middleware for transparent service continuity in wireless networks. Elsevier Pervasive Mob Comput J 3(4):439–466 doi:10.1016/j.pmcj.2007.04.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paolo Bellavista
    • 1
  • Antonio Corradi
    • 1
  • Carlo Giannelli
    • 1
  1. 1.Dip. Elettronica, Informatica e Sistemistica (DEIS)Università di BolognaBolognaItaly

Personalised recommendations