Mobile Networks and Applications

, Volume 13, Issue 3–4, pp 306–322 | Cite as

Transmitting and Gathering Streaming Data in Wireless Multimedia Sensor Networks Within Expected Network Lifetime

  • Lei Shu
  • Yan Zhang
  • Zhangbing Zhou
  • Manfred Hauswirth
  • Zhiwen Yu
  • Gearoid Hynes


Using multimedia sensor nodes in wireless sensor networks (WSNs) can significantly enhance the capability of WSNs for event description. Different kinds of holes can easily appear in WSNs. How to efficiently transmit multimedia streaming data and bypass all kinds of holes is a challenging issue. Moreover, some applications do not need WSNs to work for a long lifetime, e.g. monitoring an erupting volcano. These applications generally expect that WSNs can provide continuous streaming data during a relatively short expected network lifetime. Two basic problems are: (1) gathering as much data as possible within an expected network lifetime; (2) minimizing transmission delay within an expected network lifetime. In this paper, we proposed a cross-layer approach to facilitate the continuous one shot event recording in WSNs. We first propose the maximum streaming data gathering (MSDG) algorithm and the minimum transmission delay (MTD) algorithm to adjust the transmission radius of sensor nodes in the physical layer. Following that the two-phase geographical greedy forwarding (TPGF) routing algorithm is proposed in the network layer for exploring one/multiple optimized hole-bypassing paths. Simulation results show that our algorithms can effectively solve the identified problems.


cross layer design wireless multimedia sensor networks geographical multipath routing 


  1. 1.
    Werner-Allen C, Lorincz K, Welsh M, Marcillo O, Johnson J, Ruiz M et al (2006) Deploying a wireless sensor networks on an active volcano. IEEE Internet Computing 10(2):18–25, doi:10.1109/MIC.2006.26 CrossRefGoogle Scholar
  2. 2.
    Bokareva T, Hu W, Kanhere S, Ristic B, Gordon N, Bessell T et al (2006) Wireless sensor networks for battlefield surveillance. Proceedings of the Land Warfare Conference 2006 (LWC 2006). Brisbane, Australia, OctoberGoogle Scholar
  3. 3.
    He Z, Wu D (2006) Resource allocation and performance analysis of wireless video sensors. IEEE Trans Circuits Syst Video Technol 16(5):590–599, doi:10.1109/TCSVT.2006.873154 CrossRefGoogle Scholar
  4. 4.
    Heinzelman WR, Chandrakasan A, Balakrishnan H (2002) Energy-efficient communication protocols for wireless microsensor networks. Proceedings of Hawaii International Conference on System Science. Maui, Hawaii, USA, JanuaryGoogle Scholar
  5. 5.
    Dasgupta K, Kukreja M, Kalpakis K (2003) Topology-aware placement and role assignment for energy-efficient information gathering in sensor networks. Proceedings of the Eighth IEEE International Symposium on Computers and Communications (ISCC 2003). Kemer-Antalya, Turkey, JuneGoogle Scholar
  6. 6.
    Kalpakis K, Dasgupta K, Namjoshi P (2002) Maximum lifetime data gathering and aggregation in wireless sensor networks. Proceedings of IEEE Networks Conference (Networks 2002). Munich, Germany, JuneGoogle Scholar
  7. 7.
    Tan Hö, Körpeoglu I (2003) Power efficient data gathering and aggregation in wireless sensor networks. SIGMOD Record 32(4):66–71, doi:10.1145/959060.959072 CrossRefGoogle Scholar
  8. 8.
    Dasgupta K, Kalpakis K, Namjoshi P (2003) An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2003). New Orleans, Louisiana, USA, MarchGoogle Scholar
  9. 9.
    Hong B, Prasanna VK (2006) Maximum lifetime data sensing and extraction in energy constrained networked sensor. J Parallel Distrib Comput 66(4):567–577, doi:10.1016/j.jpdc.2005.10.009 CrossRefGoogle Scholar
  10. 10.
    Falck E, Floréen P, Kaski P (2004) Balanced data gathering in energy-constrained sensor networks. Proceedings of the First International Workshop ALGOSENSORS. Turku, Finland, JulyGoogle Scholar
  11. 11.
    Floréen P, Kaski P, Kohonen J, Orponen P (2005) Exact and approximate balanced data gathering in energy-contrained sensor networks. Theor Comp Sci 344(1):30–46, doi:10.1016/j.tcs.2005.06.024 MATHCrossRefGoogle Scholar
  12. 12.
    Sadagopan N, Krishnamachari B (2004) Maximizing data extraction in energy-limited sensor networks. Proceedings of the 23rd Conference of the IEEE Communications Society (INFOCOM 2004). Hong Kong, China, MarchGoogle Scholar
  13. 13.
    Ordóñez F, Krishnamachari B (2004) Optimal information extraction in energy-limited wireless sensor networks. IEEE J Sel Areas Commun 22(6):1121–1129, doi:10.1109/JSAC.2004.830930 CrossRefGoogle Scholar
  14. 14.
    Hong B, Prasanna VK (2005) Maximum data gathering in networked sensor systems. Int J Distrib Sens Networks 1(1):57–80, doi:10.1080/15501320590901847 CrossRefGoogle Scholar
  15. 15.
    Goldberg V, Tajan RE (1988) A new approach to the maximum flow problem. J Assoc Comput Machinery 35(4):921–940MATHGoogle Scholar
  16. 16.
    Gürses E, Akan ÖB (2005) Multimedia communication in wireless sensor networks. Ann Télécommun 60(7–8):799–827Google Scholar
  17. 17.
    Akyildiz IF, Melodia T, Chowdhury KR (2007) A survery on wireless multimedia sensor networks. Comput Networks 51(4):921–960, doi:10.1016/j.comnet.2006.10.002 CrossRefGoogle Scholar
  18. 18.
    Misra S, Reisslein M, Xue G (2008) A survey of multimedia streaming in wireless sensor networks. IEEE Communications Surveys and Tutorials (in print)Google Scholar
  19. 19.
    Akan ÖB (2007) Performance of transport protocols for multimedia communications in wireless sensor networks. IEEE Commun Lett 11(10):826–828, doi:10.1109/LCOMM.2007.061811 CrossRefGoogle Scholar
  20. 20.
    Karp B, Kung HT (2000) GPSR: Greedy perimeter stateless routing for wireless networks. Proceedings of the Annual International Conference on Mobile Computing and Networking (MobiCom 2000). Boston, Massachusetts, USA, AugustGoogle Scholar
  21. 21.
    Seada K, Helmy A, Govindan R (2007) Modeling and analyzing the correctness of geographic face routing under realistic conditions. Ad Hoc Networks 5(6):855–871, doi:10.1016/j.adhoc.2007.02.008 CrossRefGoogle Scholar
  22. 22.
    Fang Q, Gao J, Guibas LJ (2004). Locating and bypassing routing holes in sensor networks. Proceedings of the 23rd Conference of the IEEE Communications Society (INFOCOM 2004). Hong Kong, China, March.Google Scholar
  23. 23.
    Jia W, Wang T, Wang G, Guo M (2007) Hole avoiding in advance routing in wireless sensor networks. Proceedings of the IEEE Wireless Communication & Networking Conference (WCNC 2007). Las Vegas, USA, MarchGoogle Scholar
  24. 24.
    Yu F, Lee E, Choi Y, Park S, Lee D, Tian Y, et al (2007) A modeling for hole problem in wireless sensor networks. Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC 2007). Honolulu, Hawaii, USA, AugustGoogle Scholar
  25. 25.
    Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 1(4):660–670, doi:10.1109/TWC.2002.804190 CrossRefGoogle Scholar
  26. 26.
    Shin J, Chin M, Kim C (2006) Optimal transmission range for topology management wireless sensor networks. Proceedings of International Conference on Information Networking 2006 (ICOIN 2006). Sendai, Japan, JanuaryGoogle Scholar
  27. 27.
    Wu X, Cho J, d’Auriol BJ, Lee S (2007) Energy-aware routing for wireless sensor networks by AHP. Proceedings of IFIP Workshop on Software Technologies for Future Embedded & Ubiquitous Systems (SEUS 2007). Santorini Island, Greece, MayGoogle Scholar
  28. 28.
    Brassard G, Bratley P (1995) Fundamentals of algorithmics. Prentice-Hall, NJMATHGoogle Scholar
  29. 29.
    Shu L, Zhou ZB, Hauswirth M, Phuoc DL, Yu P, Zhang L (2007) Transmitting streaming data in wireless multimedia sensor networks with holes. Proceedings of the Sixth ACM International Conference on Mobile and Ubiquitous Multimedia (MUM 2007). Oulu, Finland, DecemberGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lei Shu
    • 1
  • Yan Zhang
    • 2
  • Zhangbing Zhou
    • 1
  • Manfred Hauswirth
    • 1
  • Zhiwen Yu
    • 3
  • Gearoid Hynes
    • 1
  1. 1.Digital Enterprise Research InstituteNational University of Ireland, GalwayGalwayIreland
  2. 2.Simula Research LaboratoryOsloNorway
  3. 3.Academic Center for Computing and Media StudiesKyoto UniversityKyotoJapan

Personalised recommendations