Mobile Networks and Applications

, Volume 10, Issue 5, pp 705–716 | Cite as

Throughput Analysis and Admission Control for IEEE 802.11a

Article

Abstract

We propose a new Markov model for the distributed coordination function (DCF) of IEEE 802.11. The model incorporates carrier sense, non-saturated traffic and SNR, for both basic and RTS/CTS access mechanisms. Analysis of the model shows that the throughput first increases, and then decreases with the number of active stations, suggesting the need for an admission control mechanism.

We introduce such a mechanism, which tries to maximize the throughput while maintaining a fair allocation. The maximum achievable throughput is tracked by the mechanism as the number of active stations increases. An extensive performance analysis shows that the mechanism provides significant improvements.

Keywords

mobile networks wireless LAN IEEE 802.11 distributed coordination function admission control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function IEEE Std 802.16–2001, Vol., 2002 Pages: 0_1–322 URL: IEEE Journal on Selected Areas in Communications 18(3), (March 2000).Google Scholar
  2. [2]
  3. [3]
    M. Ergen and P. Varaiya, Understanding of analytical markov model for throughput analysis in distribution coordination function of IEEE 802.11, preprint.Google Scholar
  4. [4]
    M. Ergen and P. Varaiya, Throughput formulation and WLAN optimization in mixed data rates for IEEE 802.11 DCF Mode. GLOBECOM-CAMAD 2004.Google Scholar
  5. [5]
    IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Standard, IEEE, Aug. 1999.Google Scholar
  6. [6]
    IEEE 802.11a, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer Extension in the 5 GHz Band, supplement to IEEE 802.11 Standard, Sept. 1999.Google Scholar
  7. [7]
    Part 11: Wireless LAN, Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer Extension in the 2.4 GHz Band, supplement to IEEE 802.11 Standard, Sept. 1999.Google Scholar
  8. [8]
    D. Qiao, S. Choi and K.G. Shin, Goodput analysis and link adaptation for IEEE 802.11a wireless LANs IEEE Transactions on Mobile Computing 1(4) (October-December 2002).Google Scholar
  9. [9]
    H. Wu, Y. Peng, K. Long, S. Cheng and J. Ma, Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and Enhancement.Google Scholar
  10. [10]
    Y. Xiao, A simple and effective priority scheme for IEEE 802.11, IEEE Communication Letters 7(2) (February 2003).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaBerkeley

Personalised recommendations