Skip to main content
Log in

Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Melanoma is the most lethal form of skin cancer, and its incidence has increased considerably in the last decades. Melanoma presents difficult treatment with strong resistance of tumor cells, due to its extremely invasive nature with high capacity to metastases. Berberine (BBR), an isoquinoline alkaloid, is a molecule found in several medicinal plants, and has been studied in several diseases, demonstrating antimicrobial, antidiabetic and anti-inflammatory properties and anti-tumorigenic effects.

Methods and results

In SK-MEL-28 cells, 50 μM BBR treatment for 24 h decreased cell viability by 50 percent. This concentration generated cell death both by early apoptosis and necrosis, with an increase in the DNA damage index. BBR increased (*p < 0.05) the proportion of cells in G1/G0 phase and decreased (###p < 0.005) the percentage of cells in S phase. The alcaloid increased (****p < 0.001) ROS production compared to untreated controls with an increase in activated caspase 3 and phosphorylated p53 protein levels. In addition, BBR significantly enhanced ERK as well as both pro- and anti-inflammatory cytokine expression compared to untreated controls.

Conclusions

BBR has important antiproliferative effects and may be alone or in adjunct therapy a promising candidate for melanoma treatment, a cancer with great incidence and high lethality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Girouard SD, Murphy GF (2011) Melanoma stem cells: not rare, but well done. Lab Invest 91:647–664. https://doi.org/10.1038/labinvest.2011.50

    Article  PubMed  Google Scholar 

  2. O’Sullivan B, et al. (2015) UICC manual of clinical oncology. 9° edição. https://doi.org/10.1002/9781119013143

  3. O’Sullivan J, O’Connor D (2018) The modern approach to targeting melanoma. In: Human skin cancers—pathways, mechanisms, targets and treatments. InTechOpen, London. https://doi.org/10.5772/intechopen.73489

  4. Schadendorf D et al (2015) Melanoma. Nat Rev Dis Prim 1:15003. https://doi.org/10.1038/nrdp.2015.3

    Article  PubMed  Google Scholar 

  5. Akbani R et al (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696. https://doi.org/10.1016/j.cell.2015.05.044

    Article  CAS  Google Scholar 

  6. Armstrong BK, Kricker A (1993) How much melanoma is caused by sun exposure? Melanoma Res 3:395–401. https://doi.org/10.1097/00008390-199311000-00002

    Article  CAS  PubMed  Google Scholar 

  7. D’Orazio J et al (2013) UV radiation and the skin. Int J Mol Sci 14:12222–12248. https://doi.org/10.3390/ijms140612222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen XW et al (2012) Interaction of herbal compounds with biological targets: a case study with berberine. Sci World J. https://doi.org/10.1100/2012/708292

    Article  Google Scholar 

  9. Palma TV et al (2020) Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity. Mol Biol Rep 47(6):4393–4400. https://doi.org/10.1007/s11033-020-05500-9

    Article  CAS  PubMed  Google Scholar 

  10. Tillhon M et al (2012) Berberine: new perspectives for old remedies. Biochem Pharmacol 84(10):1260–1267. https://doi.org/10.1016/j.bcp.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  11. Jiang SX et al (2017) Berberine displays antitumor activity in esophageal cancer cells in vitro. World J Gastroenterol 23(14):2511–2518. https://doi.org/10.3748/wjg.v23.i14.2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ortiz LM et al (2014) Berberine, an epiphany against cancer. Molecules 19(8):12349–12367. https://doi.org/10.3390/molecules190812349

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y et al (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ Nat 15(1):171–182. https://doi.org/10.1038/sj.cdd.4402233

    Article  CAS  Google Scholar 

  14. Chen TC et al (2009) Involvement of reactive oxygen species and caspase-dependent pathway in berberine-induced cell cycle arrest and apoptosis in C6 rat glioma cells. Int J Oncol 34(6):1681–1690. https://doi.org/10.3892/ijo_00000299

    Article  CAS  PubMed  Google Scholar 

  15. Dalle-Donne I et al (2006) Protein carbonylation, cellular dysfunction and disease progression. J Cell Mol Med 10(2):389–406. https://doi.org/10.1111/j.1582-4934.2006.tb00407.x

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed T et al (2015) Berberine and neurodegeneration: a review of literature. Pharmacol Rep 67(5):970–979. https://doi.org/10.1016/j.pharep.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  17. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  PubMed  Google Scholar 

  18. Kou Y et al (2016) Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells. Biochem Biophys Res Commun 479(2):290–296. https://doi.org/10.1016/j.bbrc.2016.09.061

    Article  CAS  PubMed  Google Scholar 

  19. Wang X et al (2021) Berberine-photodynamic therapy sensitizes melanoma cells to cisplatin-induced apoptosis through ROS-mediated P38 MAPK pathways. Toxicol Appl Pharmacol 418:115484. https://doi.org/10.1016/j.taap.2021.115484

    Article  CAS  PubMed  Google Scholar 

  20. Mittal A, Tabasum S, Singh RP (2014) Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. Phytomedicine 21(3):340–347. https://doi.org/10.1016/j.phymed.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  22. Singh NP et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  23. Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49:1183–1186. https://doi.org/10.1177/002215540104900912

    Article  CAS  PubMed  Google Scholar 

  24. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  25. Spitz DR, Oberley LW (1989) Na assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179(1):8–18. https://doi.org/10.1016/0003-2697(89)90192-9

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  27. Ellman GL (1959) Tissue Sulfhydryl groups. Arch Biochem Biophys 82:70–72. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  28. Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfhydryl components. Anal Biochem 46:639–653. https://doi.org/10.1016/0003-2697(72)90335-1

    Article  CAS  PubMed  Google Scholar 

  29. De Oliveira JS et al (2016) Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer´s-like dementia: involvement of acetylcholinesterase and cell death. Neurotoxicology 57:241–250. https://doi.org/10.1016/j.neuro.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  30. De Oliveira JS et al (2019) Neuroprotective effects of berberine on recognition memory impairment, oxidative stress, and damage to the purinergic system in rats submitted to intracerebroventricular injection of streptozotocin. Psychopharmacology 236:641–655. https://doi.org/10.1007/s00213-018-5090-6

    Article  CAS  PubMed  Google Scholar 

  31. Ilyas S et al (2021) Effect of Berberis vulgaris L. root extract on ifosfamide-induced in vivo toxicity and in vitro cytotoxicity. Sci Rep 11:1708. https://doi.org/10.1038/s41598-020-80579-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qi HW et al (2014) Epithelial-to-mesenchymal transition markers to predict response of berberine in suppressing lung cancer invasion and metastasis. J Transl Med 24:12–22. https://doi.org/10.1186/1479-5876-12-2

    Article  CAS  Google Scholar 

  33. El-Wahab AEA et al (2013) In vitro biological assessment of berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement Alternat Med 13:218. https://doi.org/10.1186/1472-6882-13-218

    Article  Google Scholar 

  34. Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase, and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66. https://doi.org/10.1038/nprot.2009.197

    Article  CAS  PubMed  Google Scholar 

  35. Park SH et al (2015) Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Braz J Med Biol Res 48(2):111–119. https://doi.org/10.1590/1414-431X20144293

    Article  CAS  PubMed  Google Scholar 

  36. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916. https://doi.org/10.1128/IAI.73.4.1907-1916.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu Y et al (2014) Berberine induces apoptosis and DNA damage in MG-63 human osteosarcoma cells. Mol Med Rep 10(4):1734–1738. https://doi.org/10.3892/mmr.2014.2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. https://doi.org/10.1038/35042675

    Article  CAS  Google Scholar 

  39. Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19(5):488–496. https://doi.org/10.1016/j.coi.2007.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyashita T et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9(6):1799–1805

    CAS  PubMed  Google Scholar 

  41. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299. https://doi.org/10.1016/0092-8674(95)90412-3

    Article  CAS  PubMed  Google Scholar 

  42. Zheng F et al (2014) p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibitedgrowth and induced-apoptosis of human lung adenocarcinoma cells by berberine. J Exp Clin Cancer Res 33(1):36. https://doi.org/10.1186/1756-9966-33-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lavoie H, Gagnon J, Therrien M (2020) ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 21(10):607–632. https://doi.org/10.1038/s41580-020-0255-7

    Article  CAS  PubMed  Google Scholar 

  44. Kataoka T (2009) Chemical biology of inflammatory cytokine signaling. J Antibiot 62:655–667. https://doi.org/10.1038/ja.2009.98

    Article  CAS  Google Scholar 

  45. Kwaśniak K et al (2019) Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent Eur J Immunol 44(2):190–200. https://doi.org/10.5114/ceji.2018.76273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TVP is grateful for doctoral fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Programa de Excelência Acadêmica (CAPES/PROEX-N°: 88882.182140/2018-01). MMP acknowledges grant support by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS Proj. No. 20255100002535). HU acknowledges grant support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Proj. No. 2018/07366-4).

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Programa de Excelência Acadêmica (CAPES/PROEX-N°: 88882.182140/2018-01), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS Proj. No. 20255100002535) and by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Proj. No. 2018/07366-4).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TVP; methodology: TVP, NBB, JSO, CEA, MO, MCS, VMM, HU, MMP, CMA; investigation: TVP, NBB, JSO, CEA, MO, MCS, VMM, HU, MMP, CMA; funding acquisition: TVP, MMP, HU; Supervision: TVP, MMP, CMA; writing—original draft: TVP, HU, MMP, CMA; Writing—review and editing: TVP, HU, MMP, CMA.

Corresponding authors

Correspondence to Taís Vidal Palma, Micheli Mainardi Pillat or Cinthia Melazzo de Andrade.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate and publish

All authors reviewed and approved the final version for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, T.V., Bianchin, N.B., de Oliveira, J.S. et al. Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cells. Mol Biol Rep 49, 2037–2046 (2022). https://doi.org/10.1007/s11033-021-07022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07022-4

Keywords

Navigation