Skip to main content
Log in

Dual Akt and Bcl-2 inhibition induces cell-type specific modulation of apoptotic and autophagic signaling in castration resistant prostate cancer cell lines

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cancer cell survival depends on the cross-regulation between apoptosis and autophagy which share common signaling pathways including PI3K/Akt/mTOR and Bcl-2. The aim of this study was to elucidate the modulation patterns between apoptosis and autophagy following dual inhibition by Akt inhibitor erufosine and Bcl-2 inhibitor ABT-737 in castration-resistant prostate cancer (CRPC) cell lines, PC-3 (Bax+) and DU-145 (Bax−).

Methods and Results

Cell cycle progression, apoptotic and autophagic signaling were examined by flow cytometry, multi-caspase assay, Hoechst staining, acridine orange staining of acidic vesicular organelles (AVOs), qRT-PCR and Western Blot. Dual inhibition increased G2/M arrest in PC-3 and DU-145, but not in the healthy prostate epithelium cells, PNT-1A. Only in PC-3, dual inhibition induced synergistic apoptotic and additive autophagic effects. In DU-145 and PNT-1A cells, ABT-737 did not display any remarkable effect on multicaspase activity and erufosine and ABT-737, neither alone nor in combination induced AVOs. By dual inhibition, AKT, BCL-2 and NF-κB gene expressions were downregulated in PC-3, both ATG-5 and BECLIN-1 gene expressions were upregulated in DU-145 but Beclin-1 protein expression was substantially reduced in both CRPC cells. Dual inhibition-induced synergistic multicaspase activation in PC-3 degrades and disrupts autophagic activity of Beclin-1, enhancing caspase-dependent apoptosis. However, in DU-145, following dual inhibition, rate of multicaspase induction and apoptosis are lower but autophagy is completely abolished despite markedly increased BECLIN-1 gene expression.

Conclusion

In conclusion, antineoplastic drug combinations may display cell-type specific modulation of apoptotic and autophagic signaling and lack of protective autophagy may not necessarily indicate increased chemotherapeutic sensitivity in heterogenous tumor subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arora K, Barbieri CE (2018) Molecular subtypes of prostate cancer. Curr Oncol Rep 20:58

    Article  PubMed  Google Scholar 

  2. Wolf P (2017) BH3 mimetics for the treatment of prostate cancer. Front Pharmacol 8:557

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang Y, Jiang X, Liang X, Jiang G (2018) Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 15:6063–6076

    PubMed  PubMed Central  Google Scholar 

  4. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741

    Article  CAS  PubMed  Google Scholar 

  5. Kaleağasıoğlu F, Ali DM, Berger MR (2020) Multiple facets of autophagy and the emerging role of alkylphosphocholines as autophagy modulators. Front Pharmacol 11:547

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kang R, Zeh H, Lotze M, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han Z, Liang J, Li Y, He J (2019) Drugs and clinical approaches targeting the antiapoptotic protein: a review. BioMed Res Int 2019:1–6

    Article  CAS  Google Scholar 

  8. Talaiezadeh A, Galehdari H, Khodadadi A (2015) Time depended Bcl-2 inhibition might be useful for a targeted drug therapy. Cancer Cell Int 15:105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang S, Sinicrope F (2010) Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy 6:256–269

    Article  CAS  PubMed  Google Scholar 

  10. Butler DE, Marlein C, Walker HF, Frame FM, Mann VM, Simms MS et al (2017) Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget 8:56698

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ansari SS, Sharma AK, Soni H, Ali DM, Tews B, König R et al (2018) Induction of ER and mitochondrial stress by the alkylphosphocholine erufosine in oral squamous cell carcinoma cells. Cell Death Dis 9:296

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han C, Xing G, Zhang M, Zhong M, Han Z, He C et al (2018) Wogonoside inhibits cell growth and induces mitochondrial-mediated autophagy-related apoptosis in human colon cancer cells through the PI3K/AKT/mTOR/p70S6K signaling pathway. Oncol Lett 15:4463–4470

    PubMed  PubMed Central  Google Scholar 

  13. Avsar Abdik E, Kaleagasioglu F, Abdik H, Sahin F, Berger MR (2019) ABT-737 and erufosine combination against castration-resistant prostate cancer: a promising but cell-type specific response associated with the modulation of anti-apoptotic signaling. Anticancer Drugs 30:383–393

    Article  CAS  PubMed  Google Scholar 

  14. Litvinov IV, Antony L, Dalrymple SL, Becker R, Cheng L, Isaacs JT (2006) PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. Prostate 66:1329–1338

    Article  CAS  PubMed  Google Scholar 

  15. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J et al (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5:1–35

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu AY (2000) Differential expression of cell surface molecules in prostate cancer cells. Can Res 60:3429–3434

    CAS  Google Scholar 

  17. Su C-Y, Huang G-C, Chang Y-C, Chen Y-J, Fang H-W (2021) Analyzing the expression of biomarkers in prostate cancer cell lines. In vivo 35:1545–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira S-M, García-Echeverría C et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci 106:268–273

    Article  CAS  PubMed  Google Scholar 

  19. Hwang E, Hwang S-H, Kim J, Park JH, Oh S, Kim YA et al (2018) ABT-737 ameliorates docetaxel resistance in triple negative breast cancer cell line. Ann Surg Treatment Res 95:240–248

    Article  CAS  Google Scholar 

  20. Opydo-Chanek M, Rak A, Cierniak A, Mazur L (2017) Combination of ABT-737 and resveratrol enhances DNA damage and apoptosis in human T-cell acute lymphoblastic leukemia MOLT-4 cells. Toxicol Vitro 42:38–46

    Article  CAS  Google Scholar 

  21. Shen HP, Wu WJ, Ko JL, Wu TF, Yang SF, Wu CH et al (2019) Effects of ABT-737 combined with irradiation treatment on uterine cervical cancer cells. Oncol Lett 18:4328–4336

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ansari SS, Akgün N, Berger MR (2017) Erufosine increases RhoB expression in oral squamous carcinoma cells independent of its tumor suppressive mode of action-a short report. Cell Oncol 40:89–96

    Article  CAS  Google Scholar 

  23. Ansari SS, Sharma AK, Zepp M, Ivanova E, Bergmann F, König R et al (2018) Upregulation of cell cycle genes in head and neck cancer patients may be antagonized by erufosine’s down regulation of cell cycle processes in OSCC cells. Oncotarget 9:5797

    Article  PubMed  Google Scholar 

  24. Pervaiz A, Akhtar MS, Mahmood S, Sajjad O, Khaliq S, Berger MR (2018) Molecular basis of cell cycle arrest induced by erufosine in metastatic breast cancer cells. AACR Cancer Res 78(13):4307

    Article  Google Scholar 

  25. Broecker-Preuss M, Becher-Boveleth N, Müller S, Mann K (2016) The BH3 mimetic drug ABT-737 induces apoptosis and acts synergistically with chemotherapeutic drugs in thyroid carcinoma cells. Cancer Cell Int 16:1–12

    Article  Google Scholar 

  26. Zhang F, Yu X, Liu X, Zhou T, Nie T, Cheng M et al (2017) ABT-737 potentiates cisplatin-induced apoptosis in human osteosarcoma cells via the mitochondrial apoptotic pathway. Oncol Rep 38:2301–2308

    Article  CAS  PubMed  Google Scholar 

  27. Kim L-H, Shin J-A, Jang B, Yang I-H, Won D-H, Jeong JH et al (2017) Sorafenib potentiates ABT-737-induced apoptosis in human oral cancer cells. Arch Oral Biol 73:1–6

    Article  CAS  PubMed  Google Scholar 

  28. Hsin I-L, Chou Y-H, Hung W-L, Ko J-L, Wang P-H (2020) The application of arsenic trioxide in ameliorating ABT-737 target therapy on uterine cervical cancer cells through unique pathways in cell death. Cancers 12:108

    Article  CAS  Google Scholar 

  29. Ou Y-C, Li J-R, Wang J-D, Chen W-Y, Kuan Y-H, Yang C-P et al (2018) Aspirin restores ABT-737-mediated apoptosis in human renal carcinoma cells. Biochem Biophys Res Commun 502:187–193

    Article  CAS  PubMed  Google Scholar 

  30. Hao J, Mao X, Ding D, Du G, Liu Z (2012) The effect of cell killing by ABT-737 synergized with docetaxel in human prostate cancer PC-3 cells. Chin J Surg 50:161–165

    PubMed  Google Scholar 

  31. Parrondo R, de las Pozas A, Reiner T, Perez-Stable G (2013) ABT-737, a small molecule Bcl-2/Bcl-xL antagonist, increases antimitotic-mediated apoptosis in human prostate cancer cells. PeerJ 1:144

    Article  Google Scholar 

  32. Tamaki H, Harashima N, Hiraki M, Arichi N, Nishimura N, Shiina H et al (2014) Bcl-2 family inhibition sensitizes human prostate cancer cells to docetaxel and promotes unexpected apoptosis under caspase-9 inhibition. Oncotarget 5:11399

    Article  PubMed  PubMed Central  Google Scholar 

  33. Saleem A, Dvorzhinski D, Santanam U, Mathew R, Bray K, Stein M et al (2012) Effect of dual inhibition of apoptosis and autophagy in prostate cancer. Prostate 72:1374–1381

    Article  CAS  PubMed  Google Scholar 

  34. Pandit B, Gartel AL (2010) New potential anti-cancer agents synergize with bortezomib and ABT-737 against prostate cancer. Prostate 70:825–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR (2019) Alkylphospholipids are signal transduction modulators with potential for anticancer therapy. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 19:66–91

    Article  Google Scholar 

  36. Fiegl M, Lindner LH, Juergens M, Eibl H, Hiddemann W, Braess J (2008) Erufosine, a novel alkylphosphocholine, in acute myeloid leukemia: single activity and combination with other antileukemic drugs. Cancer Chemother Pharmacol 62:321–329

    Article  CAS  PubMed  Google Scholar 

  37. Martelli A, Papa V, Tazzari P, Ricci F, Evangelisti C, Chiarini F et al (2010) Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK-and PP2A-dependent mechanisms. Leukemia 24:687–698

    Article  CAS  PubMed  Google Scholar 

  38. Königs SK, Pallasch CP, Lindner LH, Schwamb J, Schulz A, Brinker R et al (2010) Erufosine, a novel alkylphosphocholine, induces apoptosis in CLL through a caspase-dependent pathway. Leuk Res 34:1064–1069

    Article  PubMed  Google Scholar 

  39. Zaharieva M, Konstantinov S, Pilicheva B, Karaivanova M, Berger M (2007) Erufosine: a membrane targeting antineoplastic agent with signal transduction modulating effects. Ann N Y Acad Sci 1095:182–192

    Article  CAS  PubMed  Google Scholar 

  40. Yosifov DY, Todorov PT, Zaharieva MM, Georgiev KD, Pilicheva BA, Konstantinov SM et al (2011) Erucylphospho-N, N, N-trimethylpropylammonium (erufosine) is a potential antimyeloma drug devoid of myelotoxicity. Cancer Chemother Pharmacol 67:13–25

    Article  CAS  PubMed  Google Scholar 

  41. Yosifov DY, Kaloyanov KA, Guenova ML, Prisadashka K, Balabanova MB, Berger MR et al (2014) Alkylphosphocholines and curcumin induce programmed cell death in cutaneous T-cell lymphoma cell lines. Leuk Res 38:49–56

    Article  CAS  PubMed  Google Scholar 

  42. Henke G, Meier V, Lindner LH, Eibl H, Bamberg M, Belka C et al (2012) Effects of ionizing radiation in combination with Erufosine on T98G glioblastoma xenograft tumours: a study in NMRI nu/nu mice. Radiat Oncol 7:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Veenman L, Alten J, Linnemannstöns K, Shandalov Y, Zeno S, Lakomek M et al (2010) Potential involvement of F 0 F 1-ATP (synth) ase and reactive oxygen species in apoptosis induction by the antineoplastic agent erucylphosphohomocholine in glioblastoma cell lines. Apoptosis 15:753–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kapoor V, Zaharieva MM, Das SN, Berger MR (2012) Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt–mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 319:39–48

    Article  CAS  PubMed  Google Scholar 

  45. Ali DM, Ansari SS, Zepp M, Knapp-Mohammady M, Berger MR (2019) Optineurin downregulation induces endoplasmic reticulum stress, chaperone-mediated autophagy, and apoptosis in pancreatic cancer cells. Cell Death Discov 5:1–15

    Article  CAS  Google Scholar 

  46. Rudner J, Ruiner C-E, Handrick R, Eibl H-J, Belka C, Jendrossek V (2010) The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation. Radiat Oncol 5:108

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kaleağasıoğlu F, Berger MR (2014) Differential effects of erufosine on proliferation, wound healing and apoptosis in colorectal cancer cell lines. Oncol Rep 31:1407–1416

    Article  PubMed  Google Scholar 

  48. Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith R, Liu M, Liby T, Bayani N, Bucher E, Chiotti K et al (2020) Enzalutamide response in a panel of prostate cancer cell lines reveals a role for glucocorticoid receptor in enzalutamide resistant disease. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  50. Pedro JMB-S, Wei Y, Sica V, Maiuri MC, Zou Z, Kroemer G et al (2015) BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy 11:452–459

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tong Y, You L, Qian W (2012) Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro. Acta Pharmacol Sin 33:542–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li M, Gao P, Zhang J (2016) Crosstalk between autophagy and apoptosis: potential and emerging therapeutic targets for cardiac diseases. Int J Mol Sci 17:332

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Burçin Asutay for technical assistance during flow cytometry analysis.

Funding

This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK), Project No: 315S039.

Author information

Authors and Affiliations

Authors

Contributions

EAA: Investigation, Methodology, Validation, Visualization, Writing—original draft. FK: Conceptualization, Methodology, Writing—original draft, Writing—review & editing, Project administration. HA: Investigation, Formal analysis. DT: Investigation. FS: Funding acquisition, Resources. Martin R. Berger: Resources, Writing—review & editing.

Corresponding author

Correspondence to Ferda Kaleagasioglu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not require ethical statement.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avsar Abdik, E., Abdik, H., Turan, D. et al. Dual Akt and Bcl-2 inhibition induces cell-type specific modulation of apoptotic and autophagic signaling in castration resistant prostate cancer cell lines. Mol Biol Rep 48, 7755–7765 (2021). https://doi.org/10.1007/s11033-021-06786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06786-z

Keywords

Navigation