Skip to main content
Log in

Impacts of OrX and cAMP-insensitive Orco to the insect olfactory heteromer activity

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Insect odorant receptors (ORs) have been suggested to function as ligand-gated cation channels, with OrX/Orco heteromers combining ionotropic and metabotropic activity. The latter is mediated by different G proteins and results in Orco self-activation by cyclic nucleotide binding. In this contribution, we co-express the odor-specific subunits DmOr49b and DmOr59b with either wild-type Orco or an Orco-PKC mutant lacking cAMP activation heterologously in mammalian cells. We show that the characteristics of heteromers strongly depend on both the OrX type and the coreceptor variant. Thus, methyl acetate-sensitive Or59b/Orco demonstrated 25-fold faster response kinetics over o-cresol-specific Or49b/Orco, while the latter required a 10–100 times lower ligand concentration to evoke a similar electrical response. Compared to wild-type Orco, Orco-PKC decreased odorant sensitivity in both heteromers, and blocked an outward current rectification intrinsic to the Or49b/Orco pair. Our observations thus provide an insight into insect OrX/Orco functioning, highlighting their natural and artificial tuning features and laying the groundwork for their application in chemogenetics, drug screening, and repellent design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the manuscript and its supplementary materials. The raw data are available from the corresponding author on request.

References

  1. Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50. https://doi.org/10.1126/scisignal.2000724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wackermannová M, Pinc L, Jebavý L (2016) Olfactory sensitivity in mammalian species. Physiol Res 65:369–390. https://doi.org/10.33549/physiolres.932955

    Article  PubMed  Google Scholar 

  3. Hayden S, Teeling EC (2014) The molecular biology of vertebrate olfaction. Anat Rec (Hoboken) 297:2216–2226. https://doi.org/10.1002/ar.23031

    Article  Google Scholar 

  4. Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV (2015) Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochem Mol Biol 66:31–41. https://doi.org/10.1016/j.ibmb.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  5. Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711. https://doi.org/10.1016/j.neuron.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  6. Su C-Y, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59. https://doi.org/10.1016/j.cell.2009.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200. https://doi.org/10.1038/nrn2789

    Article  CAS  PubMed  Google Scholar 

  8. Sánchez-Gracia A, Vieira FG, Rozas J (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity (Edinb) 103:208–216. https://doi.org/10.1038/hdy.2009.55

    Article  CAS  Google Scholar 

  9. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160. https://doi.org/10.1016/j.cell.2006.01.050

    Article  CAS  PubMed  Google Scholar 

  10. Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20. https://doi.org/10.1371/journal.pbio.0040020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Störtkuhl K, Hatt H (2005) Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 8:15–17. https://doi.org/10.1038/nn1371

    Article  CAS  PubMed  Google Scholar 

  12. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714. https://doi.org/10.1016/j.neuron.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  13. Lundin C, Käll L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR et al (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581:5601–5604. https://doi.org/10.1016/j.febslet.2007.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV et al (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780. https://doi.org/10.1016/j.ibmb.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Sato K, Pellegrino M, Nakagawa TT, Nakagawa TT, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006. https://doi.org/10.1038/nature06850

    Article  CAS  PubMed  Google Scholar 

  16. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH et al (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007-U10. https://doi.org/10.1038/nature06861

    Article  CAS  PubMed  Google Scholar 

  17. Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–92. https://doi.org/10.1016/j.conb.2009.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silbering AF, Benton R (2010) Ionotropic and metabotropic mechanisms in chemoreception: “chance or design”? EMBO Rep 11:173–9. https://doi.org/10.1038/embor.2010.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deng Y, Zhang W, Farhat K, Oberland S, Gisselmann G, Neuhaus EM (2011) The stimulatory Gα(s) protein is involved in olfactory signal transduction in Drosophila. PLoS ONE 6:e18605. https://doi.org/10.1371/journal.pone.0018605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Getahun MN, Olsson SB, Lavista-Llanos S, Hansson BS, Wicher D (2013) Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLoS ONE 8:e58889. https://doi.org/10.1371/journal.pone.0058889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nolte A, Gawalek P, Koerte S, Wei H, Schumann R, Werckenthin A et al (2016) No evidence for ionotropic pheromone transduction in the Hawkmoth Manduca sexta. PLoS ONE 11:e0166060. https://doi.org/10.1371/journal.pone.0166060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wicher D (2018) Tuning insect odorant receptors. Front Cell Neurosci 12:94. https://doi.org/10.3389/fncel.2018.00094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci. https://doi.org/10.3389/fncel.2010.00133

    Article  PubMed  PubMed Central  Google Scholar 

  24. Butterwick JA, Del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T et al (2018) Cryo-EM structure of the insect olfactory receptor Orco. Nature 560:447–452. https://doi.org/10.1038/s41586-018-0420-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pask GM, Jones PL, Rützler M, Rinker DC, Zwiebel LJ (2011) Heteromeric Anopheline odorant receptors exhibit distinct channel properties. PLoS ONE. https://doi.org/10.1371/journal.pone.0028774

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wicher D, Miazzi F (2021) Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors Cell and Tissue Research. Springer, New York, pp 7–19

    Google Scholar 

  27. Nichols AS, Chen S, Luetje CW (2011) Subunit contributions to insect olfactory receptor function: channel block and odorant recognition. Chem Senses 36:781–90. https://doi.org/10.1093/chemse/bjr053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci USA 108:8821–5. https://doi.org/10.1073/pnas.1102425108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K (2012) Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS ONE 7:e32372. https://doi.org/10.1371/journal.pone.0032372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. German PF, van der Poel S, Carraher C, Kralicek AV, Newcomb RD (2013) Insights into subunit interactions within the insect olfactory receptor complex using FRET. Insect Biochem Mol Biol 43:138–45. https://doi.org/10.1016/j.ibmb.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  31. Sargsyan V, Getahun MN, Llanos SL, Olsson SB, Hansson BS, Wicher D (2011) Phosphorylation via PKC regulates the function of the Drosophila odorant co-receptor. Front Cell Neurosci 5:5. https://doi.org/10.3389/fncel.2011.00005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kain P, Chakraborty TS, Sundaram S, Siddiqi O, Rodrigues V, Hasan G (2008) Reduced odor responses from antennal neurons of G(q)alpha, phospholipase Cbeta, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. J Neurosci 28:4745–55. https://doi.org/10.1523/JNEUROSCI.5306-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wicher D (2015) Olfactory signaling in insects. Prog Mol Biol Transl Sci 130:37–54. https://doi.org/10.1016/bs.pmbts.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Forman SA (2018) Combining mutations and electrophysiology to map anesthetic sites on ligand-gated ion channels. Methods Enzymol 602:369–389. https://doi.org/10.1016/bs.mie.2018.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoerbelt P, Heifets BD (2018) Native system and cultured cell electrophysiology for investigating anesthetic mechanisms. Methods Enzymol 602:301–338. https://doi.org/10.1016/bs.mie.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  36. Wicher D, Morinaga S, Halty-deLeon L, Funk N, Hansson B, Touhara K et al (2017) Identification and characterization of the bombykal receptor in the hawkmoth Manduca sexta. J Exp Biol 220:1781–1786. https://doi.org/10.1242/jeb.154260

    Article  PubMed  Google Scholar 

  37. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74. https://doi.org/10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  38. Münch D, Galizia CG (2016) DoOR 20—comprehensive mapping of Drosophila melanogaster odorant responses. Sci Rep 6:21841. https://doi.org/10.1038/srep21841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Röllecke K, Werner M, Ziemba PM, Neuhaus EM, Hatt H, Gisselmann G (2013) Amiloride derivatives are effective blockers of insect odorant receptors. Chem Senses 38:231–6. https://doi.org/10.1093/chemse/bjs140

    Article  CAS  PubMed  Google Scholar 

  40. o-Cresol toxicity [cited 2 Jun 2020]. https://pubchem.ncbi.nlm.nih.gov/compound/o-Cresol#section=Special-Reports

  41. Methyl-acetate toxicity [cited 2 Jun 2020]. https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-acetate#section=Other-Safety-Information

  42. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–5. https://doi.org/10.1038/334320a0

    Article  CAS  PubMed  Google Scholar 

  43. Jang SK, Kräusslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–43. https://doi.org/10.1128/JVI.62.8.2636-2643.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Renaud-Gabardos E, Hantelys F, Morfoisse F, Chaufour X, Garmy-Susini B, Prats A-C (2015) Internal ribosome entry site-based vectors for combined gene therapy. World J Exp Med 5:11–20. https://doi.org/10.5493/wjem.v5.i1.11

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luker KE, Pata P, Shemiakina II, Pereverzeva A, Stacer AC, Shcherbo DS et al (2015) Comparative study reveals better far-red fluorescent protein for whole body imaging. Sci Rep 5:10332. https://doi.org/10.1038/srep10332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–42. https://doi.org/10.1126/science.1106267

    Article  CAS  PubMed  Google Scholar 

  47. Fleischer J, Pregitzer P, Breer H, Krieger J (2018) Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cell Mol Life Sci 75:485–508. https://doi.org/10.1007/s00018-017-2627-5

    Article  CAS  PubMed  Google Scholar 

  48. Wetzel CH, Behrendt HJ, Gisselmann G, Störtkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci USA 98:9377–80. https://doi.org/10.1073/pnas.151103998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S et al (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 101:16653–8. https://doi.org/10.1073/pnas.0407596101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krieger J, Grosse-Wilde E, Gohl T, Breer H (2005) Candidate pheromone receptors of the silkmoth Bombyx mori. Eur J Neurosci 21:2167–76. https://doi.org/10.1111/j.1460-9568.2005.04058.x

    Article  PubMed  Google Scholar 

  51. Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 159:189–94. https://doi.org/10.1016/j.jneumeth.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  52. Halty-deLeon L, Miazzi F, Kaltofen S, Hansson BS, Wicher D (2016) The mouse receptor transporting protein RTP1S and the fly SNMP1 support the functional expression of the Drosophila odorant coreceptor Orco in mammalian culture cells. J Neurosci Methods 271:149–53. https://doi.org/10.1016/j.jneumeth.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  53. Miazzi F, Hoyer C, Sachse S, Knaden M, Wicher D, Hansson BS et al (2019) Optimization of insect odorant receptor trafficking and functional expression via transient transfection in HEK293 cells. Chem Senses 44:673–682. https://doi.org/10.1093/chemse/bjz062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miazzi F, Schulze HCC, Zhang L, Kaltofen S, Hansson BS, Wicher D (2019) Low Ca2+ levels in the culture media support the heterologous expression of insect odorant receptor proteins in HEK cells. J Neurosci Methods 312:122–125. https://doi.org/10.1016/j.jneumeth.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  55. Corcoran JA, Sonntag Y, Andersson MN, Johanson U, Löfstedt C (2018) Endogenous insensitivity to the Orco agonist VUAA1 reveals novel olfactory receptor complex properties in the specialist fly Mayetiola destructor. Sci Rep 8:3489. https://doi.org/10.1038/s41598-018-21631-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB (2011) A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478:511–4. https://doi.org/10.1038/nature10438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Materić D, Bruhn D, Turner C, Morgan G, Mason N, Gauci V (2015) Methods in plant foliar volatile organic compounds research. Appl Plant Sci 3:1500044. https://doi.org/10.3732/apps.1500044

    Article  Google Scholar 

  58. Getahun MN, Wicher D, Hansson BS, Olsson SB (2012) Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity. Front Cell Neurosci 6:54. https://doi.org/10.3389/fncel.2012.00054

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cao L-H, Yang D, Wu W, Zeng X, Jing B-Y, Li M-T et al (2017) Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nat Commun 8:1357. https://doi.org/10.1038/s41467-017-01185-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo H, Kunwar K, Smith D (2017) odorant receptor sensitivity modulation in Drosophila. J Neurosci 37:9465–9473. https://doi.org/10.1523/JNEUROSCI.1573-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clark JT, Chen YCD (2018) Phosphorylation switch of orco shapes the sense of smell in insects. J Neurosci 38:1058–1060. https://doi.org/10.1523/JNEUROSCI.3157-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andersson MN, Newcomb RD (2017) Pest control compounds targeting insect chemoreceptors: another silent spring? Front Ecol Evol. https://doi.org/10.3389/fevo.2017.00005

    Article  Google Scholar 

  63. Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319:1838–42. https://doi.org/10.1126/science.1153121

    Article  CAS  PubMed  Google Scholar 

  64. Bohbot JD, Dickens JC (2010) Insect repellents: modulators of mosquito odorant receptor activity. PLoS ONE 5:e12138. https://doi.org/10.1371/journal.pone.0012138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu C, Pitts RJ, Bohbot JD, Jones PL, Wang G, Zwiebel LJ (2010) Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000467

    Article  PubMed  PubMed Central  Google Scholar 

  66. DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C et al (2013) Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498:487–91. https://doi.org/10.1038/nature12206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Maksim Erokhin and Dr. Dieter Wicher for their help with the DNA templates.

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR) Grant 18-34-20087. Electrophysiology experiments were supported by Russian Science Foundation Grant 20-15-00408. L.A.K. was supported by the Russian Foundation for Basic Research (RFBR) Grant 19-34-90140 for PhD-students.

Author information

Authors and Affiliations

Authors

Contributions

AMB and ESN managed the project; AMB, ESN, PMB and KAL conceived and designed the experiments; DVK, LAK, and ELS performed the genetic engineering, cell culture and fluorescence microscopy experiments; VOI and ESN performed the electrophysiology measurements and analyzed the data; AMB, PMB, LAK acquired funding; AMB, VOI, ESN, and DVK wrote the paper. All authors analyzed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Alexey M. Bogdanov.

Ethics declarations

Conflict of interests

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1819 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesov, D.V., Ivanova, V.O., Sokolinskaya, E.L. et al. Impacts of OrX and cAMP-insensitive Orco to the insect olfactory heteromer activity. Mol Biol Rep 48, 4549–4561 (2021). https://doi.org/10.1007/s11033-021-06480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06480-0

Keywords

Navigation