Skip to main content

Advertisement

Log in

Role of ZBTB7A zinc finger in tumorigenesis and metastasis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The zinc finger and BTB (broad-complex, tramtrack and bric a brac) domain containing protein 7A (ZBTB7A) is a pleiotropic transcription factor that plays an important role in various stages of cell proliferation, differentiation, and other developmental processes. ZBTB7A is a member of the POK family that directly and specifically binds to short DNA recognition sites located near their target genes thereby acting as transcriptional activator or repressor. ZBTB7A overexpression has been associated with tumorigenesis and metastasis in various human cancer types, including breast, prostate, lung, ovarian, and colon cancer. However in some instances downregulation of ZBTB7A results in tumor progression, suggesting its role as a tumor suppressor. ZBTB7A is involved with complicated regulatory networks which include protein–protein and protein-nucleic acid interactions. ZBTB7A involvement in cancer progression and metastasis is perhaps enabled through the regulation of various signaling pathways depending on the type and genetic context of cancer. The association of ZBTB7A with other proteins affects cancer aggressiveness, therapeutic resistance and clinical outcome. This review focuses on the involvement of ZBTB7A in various signaling pathways and its role in cancer progression. We will also review the literature on ZBTB7A and cancer which could be potentially explored for its therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADH5:

Alcohol dehydrogenase 5

ADT:

Androgen deprivation therapy

AKT:

Ak strain transforming

AML:

Acute myeloid leukemia

AMP:

Adenosine monophosphate

AR:

Androgen receptor

ARF:

Alternative reading frame

AXL:

Tyrosine-protein kinase receptor

BAK1:

Bcl-2 homologous antagonist/killer 1

BAX:

BCL2 associated X, apoptosis regulator

BCL-XL :

B-cell lymphoma-extra-large

BCL-2:

B-cell lymphoma 2

BCL-6:

B-cell lymphoma 6

BCoR:

B-cell lymphoma 6 co-repressor

BIM:

Bcl-2-like protein 11

BMPs:

Bone morphogenic proteins

BTB:

Broad-complex, tramtrack and bric a brac

CBF:

Core-binding factor

CCAT2:

Colon cancer-associated transcript 2

C/EBPβ:

CCAAT/enhancer-binding protein β

CDK2:

Cyclin dependent kinase 2

CHL:

Classical Hodgkin lymphoma

CLL:

Chronic lymphocytic leukemia

CAN:

Copy number alterations

COMP:

Cartilage oligomeric matrix protein

cPARP:

Cytoplasmic poly [ADP-ribose] polymerase

CREB1:

CAMP response element binding protein

CRPC:

Castration resistant prostate cancer

CTL:

Cytotoxic T lymphocyte

DAP5:

Death-associated protein 5

Dll4:

Delta-like 4

E2F4:

E2F transcription factor 4

EIF4G2:

Eukaryotic translation initiation factor 4 gamma 2

ELK1:

ETS like-1 protein

EMT:

Epithelial-mesenchymal transition

ERα:

Estrogen receptor alpha

ERK:

Extracellular-signal-regulated kinase

ESR1:

Estrogen receptor 1

FASN:

Fatty acid synthase

FBI-1:

Factor that binds to inducer of short transcripts protein 1

FDH:

Formate dehydrogenases

FOXO:

Forkhead box transcription factor

FRE:

FBI-related element

GAS5:

Growth arrest-specific 5

GATA1:

GATA binding protein 1

GLUT3:

Glucose transporter 3

GPCR:

G-protein coupled receptor

HDACs:

Histone deacetylases

HIF-1:

Hypoxia induced factor-1

HRE:

Hypoxia related element

IKK:

IκB kinase

IL-6:

Interleukin-6

IL-24:

Interleukin-24

LINC00473:

Long intergenic non-protein coding RNA 473

lncRNAs:

Long noncoding RNAs

LRF:

Leukemia/lymphoma related factor

MBD3:

Methyl-CpG-binding domain protein 3

MCAM:

Melanoma cell adhesion molecule

M-CSF:

Macrophage colony-stimulating factor

MCT4:

Monocarboxylate transporter 4

MDM2:

Mouse double minute 2 homolog

MDR1:

Multidrug resistance 1

MEF2D:

Myocyte enhancer factor 2D

mSin3A:

SIN3 transcription regulator family member A

MKP1:

Mitogen-activated protein kinase phosphatase 1

mTOR:

Mammalian target of rapamycin

MT1-MMP:

Membrane type 1-matrix metalloproteinase

NCoR:

Nuclear receptor co-repressor

NFATc1:

Nuclear factor of activated T cells c1

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NLPHL:

Nodular lymphocyte-predominant Hodgkin lymphoma

NPC:

Nasopharyngeal carcinoma

NSCLC:

Non-small cell lung cancer

NuRD:

Nucleosome remodeling deacetylase

OSCAR:

Osteoclast associated receptor

P53:

Tumor protein P53

PAR2:

Protease‐activated receptor 2

PARP:

Poly [ADP-ribose] polymerase

PFKP:

Phosphofructokinase

Pgp:

P-glycoprotein

PICS:

PTEN loss-induced cellular senescence

PI3K:

Phosphatidylinositol-3-kinase

PKB:

Protein kinase B

PKM:

Pyruvate kinase muscle isoenzyme

POK:

POZ/BTB and Krüppel family

POZ:

Poxvirus and zinc finger

PSA:

Prostate specific antigen

PTEN:

Phosphatase and tensin homolog

rHDL:

Reconstituted high density lipoprotein

RANKL:

Receptor activator of nuclear factor kappa-Β ligand

Rb:

Retinoblastoma

RHD:

REL homology domain

RUNX1:

Runt-related transcription factor 1

RUNX1T1:

RUNX1 partner transcriptional co-repressor 1

SMAD4:

SMAD family member 4, mothers against decapentaplegic homolog 4

SMRT:

Silencing mediator of retinoic acid and thyroid hormone

SOX9:

SRY (sex determining region Y)-box transcription factor 9

Sp1:

Specificity factor 1

SRD5A1:

3-Oxo-5-alpha-steroid 4-dehydrogenase

TGF-β:

Transforming growth factor beta-1

TNFα:

Tumor necrosis factor alpha

TNFAIP3:

TNF alpha induced protein 3

TRAIL-R2:

Tumor necrosis factor-related apoptosis-inducing ligand receptor 2

TRAP:

Tartrate-resistant acid phosphatase

TRIM25:

Tripartite motif containing 25

VEGF:

Vascular endothelial growth factor

WAF1:

Wild-type P53-activated fragment 1

XAF1:

XIAP-associated factor 1

XIAP:

X-linked inhibitor of apoptosis

ZBTB:

Zinc finger and BTB

ZBTB7A:

Zinc finger and BTB domain containing protein 7A

References

  1. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Privé GG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 5:1–18. https://doi.org/10.1186/gb-2005-6-10-r82

    Article  CAS  Google Scholar 

  2. Ramos Pittol JM, Oruba A, Mittler G, Saccani S, van Essen D (2018) Zbtb7a is a transducer for the control of promoter accessibility by NF-kappa B and multiple other transcription factors. PLoS Biol 16:1–33. https://doi.org/10.1371/journal.pbio.2004526

    Article  CAS  Google Scholar 

  3. Gupta S, Singh AK, Prajapati KS, Kushwaha PP, Shuaib M, Kumar S (2020) Emerging role of ZBTB7A as an oncogenic driver and transcriptional repressor. Cancer Lett 483:22–34. https://doi.org/10.1016/j.canlet.2020.04.015

    Article  CAS  PubMed  Google Scholar 

  4. Lee DK, Suh D, Edenberg HJ, Hur MW (2002) POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1. J Biol Chem 277:26761–26768. https://doi.org/10.1074/jbc.M202078200

    Article  CAS  PubMed  Google Scholar 

  5. Karabay AZ, Koc A, Ozkan T, Hekmatshoar Y, Altinok Gunes B, Sunguroglu A, Buyukbingol Z, Atalay A, Aktan F (2018) Expression analysis of Akirin-2, NFκB-p65 and β-catenin proteins in imatinib resistance of chronic myeloid leukemia. Hematology 23:765–770. https://doi.org/10.1080/10245332.2018.1488795

    Article  CAS  PubMed  Google Scholar 

  6. Liu XS, Haines JE, Mehanna EK, Genet MD, Ben-Sahra I, Asara JM, Manning BD, Yuan ZM (2014) ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev 28:1917–1928. https://doi.org/10.1101/gad.245910.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Redondo Monte E, Kerbs P, Greif PA (2020) ZBTB7A links tumor metabolism to myeloid differentiation. Exp Hematol 87:20–24. https://doi.org/10.1016/j.exphem.2020.05.010

    Article  CAS  PubMed  Google Scholar 

  8. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  9. Tian Z, Wang H, Jia Z, Shi J, Tang J, Mao L, Liu H, Deng Y, He Y, Ruan Z, Li J, Wu Y, Ni B (2010) Tumor-targeted inhibition by a novel strategy—mimoretrovirus expressing siRNA targeting the Pokemon gene. Curr Cancer Drug Targets 10:932–941. https://doi.org/10.2174/156800910793357907

    Article  CAS  PubMed  Google Scholar 

  10. Guo C, Zhu K, Sun W, Yang B, Gu W, Luo J, Peng B, Zheng J (2014) The effect of Pokemon on bladder cancer epithelial-mesenchymal transition. Biochem Biophys Res Commun 443:1226–1231. https://doi.org/10.1016/j.bbrc.2013.12.115

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Kidiyoor A, Hu Y, Guo C, Liu M, Yao X, Zhang Y, Peng B, Zheng J (2015) Evaluation of transforming growth factor-β1 suppress Pokemon/epithelial-mesenchymal transition expression in human bladder cancer cells. Tumour Biol 36:1155–1162. https://doi.org/10.1007/s13277-014-2625-2

    Article  CAS  PubMed  Google Scholar 

  12. Mao A, Chen M, Qin Q, Liang Z, Jiang W, Yang W, Wei C (2019) ZBTB7A promotes migration, invasion and metastasis of human breast cancer cells through NF-κβ-induced epithelial-mesenchymal transition in vitro and in vivo. J Biochem 166:485–493. https://doi.org/10.1093/jb/mvz062

    Article  CAS  PubMed  Google Scholar 

  13. Joo JW, Kim HS, Do SI, Sung JY (2018) Expression of Zinc Finger and BTB Domain-containing 7A in Colorectal Carcinoma. Anticancer Res 38:2787–2792

    Article  CAS  PubMed  Google Scholar 

  14. Hao Y, Xi J, Peng Y, Bian B, Hao G, Xi Y, Zhang Z (2020) Circular RNA Circ_0016760 modulates non-small-cell lung cancer growth through the miR-577/zbtb7a axis. Cancer Manag Res 12:5561–5574. https://doi.org/10.2147/CMAR.S243675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47(W1):W234–W241. https://doi.org/10.1093/nar/gkz240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kushwaha PP, Vardhan PS, Kapewangolo P, Shuaib M, Prajapati SK, Singh AK, Kumar S (2019) Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells. Life Sci 234:1–15. https://doi.org/10.1016/j.lfs.2019.116783

    Article  CAS  Google Scholar 

  17. Constantinou C, Spella M, Chondrou V, Patrinos GP, Papachatzopoulou A, Sgourou A (2019) The multi facetedfunctioning portrait of LRF/ZBTB7A. Hum Genomics 13:1–4. https://doi.org/10.1186/s40246-019-0252-0

    Article  CAS  Google Scholar 

  18. Monte ER, Kerbs P, Greif PA (2020) ZBTB7A links tumor metabolism to myeloid differentiation. Exp Hematol 87:20–25. https://doi.org/10.1016/j.exphem.2020.05.010

    Article  CAS  Google Scholar 

  19. Zhu C, Chen G, Zhao Y, Gao XM, Wang J (2018) Regulation of the development and function of B cells by ZBTB transcription factors. Front Immunol 9:580. https://doi.org/10.3389/fimmu.2018.00580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Cui J, Xue F, Zhang C, Mei Z, Wang Y, Bi M, Shan D, Meredith A, Li H, Xu ZQ (2015) Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses. Biochim Biophys Acta 1849:270–281. https://doi.org/10.1016/j.bbagrm.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  21. Maeda T, Merghoub T, Hobbs RM, Dong L, Maeda M, Zakrzewski J, van den Brink MR, Zelent A, Shigematsu H, Akashi K, Teruya-Feldstein J, Cattoretti G, Pandolfi PP (2007) Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316:860–866. https://doi.org/10.1126/science.1140881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawashima N, Akashi A, Nagata Y, Kihara R, Ishikawa Y, Asou N, Ohtake S, Miyawaki S, Sakura T, Ozawa Y, Usui N, Kanamori H, Ito Y, Imai K, Suehiro Y, Kitamura K, Sakaida E, Takeshita A, Suzushima H, Naoe T, Matsumura I, Miyazaki Y, Ogawa S, Kiyoi H, Japan Adult Leukemia Study Group (2019) Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study. Ann Hematol 98:83–91. https://doi.org/10.1007/s00277-018-3492-5

    Article  PubMed  Google Scholar 

  23. Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, Radtke I, Chao JR, Walsh MP, Song G, Andersson AK, Dang J, Dong L, Liu Y, Huether R, Cai Z, Mulder H, Wu G, Edmonson M, Rusch M, Qu C, Li Y, Vadodaria B, Wang J, Hedlund E, Cao X, Yergeau D, Nakitandwe J, Pounds SB, Shurtleff S, Fulton RS, Fulton LL, Easton J, Parganas E, Pui CH, Rubnitz JE, Ding L, Mardis ER, Wilson RK, Gruber TA, Mullighan CG, Schlenk RF, Paschka P, Döhner K, Döhner H, Bullinger L, Zhang J, Klco JM, Downing JR (2016) The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 48:1551–1556. https://doi.org/10.1038/ng.3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maeda T, Ito K, Merghoub T, Poliseno L, Hobbs RM, Wang G, Dong L, Maeda M, Dore LC, Zelent A, Luzzatto L, Teruya-Feldstein J, Weiss MJ, Pandolfi PP (2009) LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev Cell 17:527–540. https://doi.org/10.1016/j.devcel.2009.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maeda T (2016) Regulation of hematopoietic development by ZBTB transcription factors. Int J Hematol 104:310–323. https://doi.org/10.1007/s12185-016-2035-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bohn O, Maeda T, Filatov A, Lunardi A, Pandolfi PP, Teruya-Feldstein J (2014) Utility of LRF/Pokemon and NOTCH1 protein expression in the distinction between nodular lymphocyte-predominant Hodgkin lymphoma and classical Hodgkin lymphoma. Int J Surg Pathol 22:6–11. https://doi.org/10.1177/1066896913513833

    Article  CAS  PubMed  Google Scholar 

  27. Lee SU, Maeda M, Ishikawa Y, Li SM, Wilson A, Jubb AM, Sakurai N, Weng L, Fiorini E, Radtke F, Yan M, Macdonald HR, Chen CC, Maeda T (2013) LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance. Blood 121:918–929. https://doi.org/10.1182/blood-2012-03-418103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Opatz S, Bamopoulos SA, Metzeler KH, Herold T, Ksienzyk B, Bräundl K, Tschuri S, Vosberg S, Konstandin NP, Wang C, Hartmann L, Graf A, Krebs S, Blum H, Schneider S, Thiede C, Middeke JM, Stölzel F, Röllig C, Schetelig J, Ehninger G, Krämer A, Braess J, Görlich D, Sauerland MC, Berdel WE, Wörmann BJ, Hiddemann W, Spiekermann K, Bohlander SK, Greif PA (2020) The clinical mutatome of core binding factor leukemia. Leukemia 34:1553–1562. https://doi.org/10.1038/s41375-019-0697-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Wang Y, Li X, Xia X, Li N, He R, He H, Han C, Zhao W (2017) ZBTB7A enhances osteosarcoma chemoresistance by transcriptionally repressing lncRNALINC00473-IL24 activity. Neoplasia 19:908–918. https://doi.org/10.1016/j.neo.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumari R, Li H, Haudenschild DR, Fierro F, Carlson CS, Overn P, Gupta L, Gupta K, Nolta J, Yik JH, Di Cesare PE (2012) The oncogene LRF is a survival factor in chondrosarcoma and contributes to tumor malignancy and drug resistance. Carcinogenesis 33:2076–2083. https://doi.org/10.1093/carcin/bgs254

    Article  CAS  PubMed  Google Scholar 

  31. Liu CJ, Prazak L, Fajardo M, Yu S, Tyagi N, Di Cesare PE (2004) Leukemia/lymphoma-related factor, a POZ domain-containing transcriptional repressor, interacts with histone deacetylase-1 and inhibits cartilage oligomeric matrix protein gene expression and chondrogenesis. J Biol Chem 279:47081–47091. https://doi.org/10.1074/jbc.M405288200

    Article  CAS  PubMed  Google Scholar 

  32. Zhang L, Wang Y, Zhang L, Xia X, Chao Y, He R, Han C, Zhao W (2019) ZBTB7A, a miR-663a target gene, protects osteosarcoma from endoplasmic reticulum stress-induced apoptosis by suppressing LncRNA GAS5 expression. Cancer Lett 448:105–116. https://doi.org/10.1016/j.canlet.2019.01.046

    Article  CAS  PubMed  Google Scholar 

  33. Clohisy DR, Ramnaraine ML (1998) Osteoclasts are required for bone tumors to grow and destroy bone. J Orthop Res 16:660–666. https://doi.org/10.1002/jor.1100160606

    Article  CAS  PubMed  Google Scholar 

  34. Kukita A, Kukita T, Nagata K, Teramachi J, Li YJ, Yoshida H, Miyamoto H, Gay S, Pessler F, Shobuike T (2011) The transcription factor FBI-1/OCZF/LRF is expressed in osteoclasts and regulates RANKL-induced osteoclast formation in vitro and in vivo. Arthritis Rheum 63(9):2744–2754. https://doi.org/10.1002/art.30455

    Article  CAS  PubMed  Google Scholar 

  35. Tsuji-Takechi K, Negishi-Koga T, Sumiya E, Kukita A, Kato S, Maeda T, Pandolfi PP, Moriyama K, Takayanagi H (2012) Stage-specific functions of leukemia/lymphoma-related factor (LRF) in the transcriptional control of osteoclast development. Proc Natl Acad Sci 109:2561–2566. https://doi.org/10.1073/pnas.1116042109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim JH, Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21:233–241

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Cui J, Xue F, Overstreet AM, Zhan Y, Shan D, Li H, Li H, Wang Y, Zhang M, Yu C, Xu ZD (2016) resveratrol represses pokemon expression in human glioma cells. Mol Neurobiol 53:1266–1278. https://doi.org/10.1007/s12035-014-9081-2

    Article  CAS  PubMed  Google Scholar 

  38. Krossa S, Schmitt AD, Hattermann K, Fritsch J, Scheidig AJ, Mehdorn HM, Held-Feindt J (2015) Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1. Oncotarget 6:21029–21045

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen MJ, Wang L, Yang WP, Qin QH, Tan QX, Lian B, Wei CY (2018) Effects of FBI-1 silencing on proliferation and apoptosis of triple-negative breast cancer cell line MDA-MB-231. Sheng Li Xue Bao 70:497–503

    CAS  PubMed  Google Scholar 

  40. Zu X, Ma J, Liu H, Liu F, Tan C, Yu L, Wang J, Xie Z, Cao D, Jiang Y (2011) Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression. Breast Cancer Res 13:1–11. https://doi.org/10.1186/bcr2843

    Article  CAS  Google Scholar 

  41. He S, Liu F, Xie Z, Zu X, Xu W, Jiang Y (2010) P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells. Int J Mol Sci 11:3309–3351. https://doi.org/10.3390/ijms11093039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar S, Kushwaha PP, Gupta S (2019) Emerging targets in cancer drug resistance. Cancer Drug Resist 2(2):161–177

    PubMed  PubMed Central  Google Scholar 

  43. Kushwaha PP, Maurya SK, Singh A, Prajapati KS, Singh AK, Shuaib M, Kumar S (2021) Bulbine frutescens phytochemicals as novel ABC-transporter inhibitor: a molecular docking and molecular dynamics simulation study. J Cancer Metastasis Treat 7:1–13

    CAS  Google Scholar 

  44. Zhu Q, Jin L, Casero RA, Davidson NE, Huang Y (2012) Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells. Breast Cancer Res Treat 136:57–66. https://doi.org/10.1007/s10549-012-2235-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao X, Shen Y, Yin L, He J, Ni X, Luo G, Chen X, Zhu W, Zhong J, Liu J, Peng X, Zu X (2019) Knockdown of ZBTB7A inhibits cell proliferation of breast cancer through regulating the ubiquitination of estrogen receptor alpha. Life Sci 239:1–8. https://doi.org/10.1016/j.lfs.2019.117042

    Article  CAS  Google Scholar 

  46. Derynck R, Akhurst RJ (2007) Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol 9:1000–1004. https://doi.org/10.1038/ncb434

    Article  CAS  PubMed  Google Scholar 

  47. Shen Y, Cao R, Liu W, Zhou Y, Wu Y, Tan J, Jin M, Zhong J, Zhang Q, Liu J, Zu X (2017) Negative feedback loop between ZBTB7A and TGF-β in breast cancer. Oncol Lett 14:1403–1410. https://doi.org/10.3892/ol.2017.6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen L, Zhong J, Liu JH, Liao DF, Shen YY, Zhong XL, Xiao X, Ding WJ, Peng XD, Xiong W, Zu XY (2019) Pokemon inhibits transforming growth factor β-Smad4-related cell proliferation arrest in breast cancer through specificity protein 1. J Breast Cancer 22:15–28. https://doi.org/10.4048/jbc.2019.22.e11

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schroll MM, Liu X, Herzog SK, Skube SB, Hummon AB (2016) Nutrient restriction of glucose or serum results in similar proteomic expression changes in 3D colon cancer cell cultures. Nutr Res 36:1068–1080. https://doi.org/10.1016/j.nutres.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu M, Wang P, Feng F, Li MY (2017) LRF inhibits p53 expression in colon cancer cells via modulating DAP5 activity. Cell Biochem Funct 35:401–406. https://doi.org/10.1002/cbf.3287

    Article  CAS  PubMed  Google Scholar 

  51. Yordy JS, Moussa O, Pei H, Chaussabel D, Li R, Watson DK (2005) SP100 inhibits ETS1 activity in primary endothelial cells. Oncogene 24:916–931. https://doi.org/10.1038/sj.onc.1208245

    Article  CAS  PubMed  Google Scholar 

  52. Choi SH, Kim MY, Yoon YS, Koh DI, Kim MK, Cho SY, Kim KS, Hur MW (2019) Hypoxia-induced RelA/p65 derepresses SLC16A3 (MCT4) by downregulating ZBTB7A. Biochim Biophys Acta Gene Regul Mech 1862:771–785. https://doi.org/10.1016/j.bbagrm.2019.06.0049

    Article  CAS  PubMed  Google Scholar 

  53. Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, San Martín A, Barros LF (2019) Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem 294:20135–20147. https://doi.org/10.1074/jbc.RA119.009093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun G, Peng B, Xie Q, Ruan J, Liang X (2018) Upregulation of ZBTB7A exhibits a tumor suppressive role in gastric cancer cells. Mol Med Rep 17:2635–2641. https://doi.org/10.3892/mmr.2017.8104

    Article  CAS  PubMed  Google Scholar 

  55. Shi DB, Wang YW, Xing AY, Gao JW, Zhang H, Guo XY, Gao P (2015) C/EBPα-induced miR-100 expression suppresses tumor metastasis and growth by targeting ZBTB7A in gastric cancer. Cancer Lett 369:376–385. https://doi.org/10.1016/j.canlet.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  56. Liu F, Lan J, Jiao W, Mo X, Huang Y, Ye H, Xiao R, Wang Y, Mo M, Shi L (2017) Differences in Zbtb7a expression cause heterogeneous changes in human nasopharyngeal carcinoma CNE3 sublines. Oncol Lett 14:2669–2676. https://doi.org/10.3892/ol.2017.6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiao W, Liu F, Tang FZ, Lan J, Xiao RP, Chen XZ, Ye HL, Cai YL (2013) Expression of the Pokemon proto-oncogene in nasopharyngeal carcinoma cell lines and tissues. Asian Pac J Cancer Prev 14:6315–6319. https://doi.org/10.7314/apjcp.2013.14.11.6315

    Article  PubMed  Google Scholar 

  58. Liu F, Tang F, Lan J, Jiao W, Si Y, Lu W, Mo M, Li B, Lu J, Wei J, Qin Y, Xiao R, Zhang B, Wang Y, Xiong W (2018) Stable knockdown of ZBTB7A promotes cell proliferation and progression in nasopharyngeal carcinoma. Tumori 104:37–42. https://doi.org/10.5301/tj.5000706

    Article  CAS  PubMed  Google Scholar 

  59. Yeh LY, Yang CC, Wu HL, Kao SY, Liu CJ, Chen YF, Lin SC, Chang KW (2020) The miR-372-ZBTB7A oncogenic axis suppresses TRAIL-R2 Associated Drug Sensitivity In Oral Carcinoma. Front Oncol 10:1–14. https://doi.org/10.3389/fonc.2020.00047

    Article  Google Scholar 

  60. Kong J, Liu X, Li X, Wu J, Wu N, Chen J, Fang F (2016) Pokemon promotes the invasiveness of hepatocellular carcinoma by enhancing MEF2D transcription. Hepatol Int 10:493–500. https://doi.org/10.1007/s12072-015-9697-y

    Article  PubMed  Google Scholar 

  61. Tian J, Jiang Y (2012) Insulin upregulates the expression of zinc finger and BTB domain-containing 7A in HepG2 cells. Mol Med Rep 6:1379–1384. https://doi.org/10.3892/mmr.2012.1113

    Article  CAS  PubMed  Google Scholar 

  62. Lin CC, Zhou JP, Liu YP, Liu JJ, Yang XN, Jazag A, Zhang ZP, Guleng B, Ren JL (2012) The silencing of Pokemon attenuates the proliferation of hepatocellular carcinoma cells in vitro and in vivo by inhibiting the PI3K/Akt pathway. PLoS ONE 7:1–8. https://doi.org/10.1371/journal.pone.0051916

    Article  CAS  Google Scholar 

  63. Hong X, Hong XY, Li T, He CY (2015) Pokemon and MEF2D co-operationally promote invasion of hepatocellular carcinoma. Tumour Biol 36:9885–9893. https://doi.org/10.1007/s13277-015-3744-0

    Article  CAS  PubMed  Google Scholar 

  64. Fang F, Yang L, Tao Y, Qin W (2012) FBI-1 promotes cell proliferation and enhances resistance to chemotherapy of hepatocellular carcinoma in vitro and in vivo. Cancer 118:134–146. https://doi.org/10.1002/cncr.26251

    Article  CAS  PubMed  Google Scholar 

  65. Yang X, Zu X, Tang J, Xiong W, Zhang Y, Liu F, Jiang Y (2012) Zbtb7 suppresses the expression of CDK2 and E2F4 in liver cancer cells: implications for the role of Zbtb7 in cell cycle regulation. Mol Med Rep 5:1475–1480. https://doi.org/10.3892/mmr.2012.846

    Article  CAS  PubMed  Google Scholar 

  66. Bi X, Jin Y, Gao X, Liu F, Gao D, Jiang Y, Liu H (2013) Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics. Eur J Mass Spectrom 19:111–121. https://doi.org/10.1255/ejms.1221

    Article  CAS  Google Scholar 

  67. Chen Z, Liu F, Zhang N, Cao D, Liu M, Tan Y, Jiang Y (2013) p38β, A novel regulatory target of Pokemon in hepatic cells. Int J Mol Sci 14:13511–13524. https://doi.org/10.3390/ijms140713511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jin XL, Sun QS, Liu F, Yang HW, Liu M, Liu HX, Xu W, Jiang YY (2013) microRNA 21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation. J Cell Biochem 114(7):1625–1633. https://doi.org/10.1002/jcb.24504

    Article  CAS  PubMed  Google Scholar 

  69. Masoumi-Moghaddam S, Amini A, Morris DL (2014) The developing story of Sprouty and cancer. Cancer Metastasis Rev 33:695–720. https://doi.org/10.1007/s10555-014-9497-1

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhu M, Li M, Wang T, Linghu E, Wu B (2016) MicroRNA-137 represses FBI-1 to inhibit proliferation and in vitro invasion and migration of hepatocellular carcinoma cells. Tumour Biol 37:13995–14008. https://doi.org/10.1007/s13277-016-5230-8

    Article  CAS  PubMed  Google Scholar 

  71. Liang X, Zhao Q, Geng T, Luo S, He Q (2018) MiR-106b regulates the apoptosis and tumorigenesis of hepatocellular carcinoma via targeting Zinc finger and BTB domain-containing protein 7A (Zbtb7a). J Biochem Mol Toxicol 32:1–7. https://doi.org/10.1002/jbt.22169

    Article  CAS  Google Scholar 

  72. Kong J, Liu X, Jia J, Wu J, Wu N, Chen J, Fang F (2015) Pokemon siRNA delivery mediated by RGD-modified HBV core protein suppressed the growth of hepatocellular carcinoma. Hum Gene Ther Methods 26:175–180. https://doi.org/10.1089/hgtb.2015.093

    Article  CAS  PubMed  Google Scholar 

  73. Liu K, Liu F, Zhang N, Liu S, Jiang Y (2012) Pokemon silencing leads to Bim-mediated anoikis of human hepatoma cell QGY7703. Int J Mol Sci 13:5818–5831. https://doi.org/10.3390/ijms13055818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhijun Z, Jingkang H (2017) MicroRNA-520e suppresses non-small-cell lung cancer cell growth by targeting Zbtb7a-mediated Wnt signaling pathway. Biochem Biophys Res Commun 486:49–56. https://doi.org/10.1016/j.bbrc.2017.02.121

    Article  CAS  PubMed  Google Scholar 

  75. Alam H, Li N, Dhar SS, Wu SJ, Lv J, Chen K, Flores ER, Baseler L, Lee MG (2018) HP1γ promotes lung adenocarcinoma by downregulating the transcription-repressive regulators NCOR2 and ZBTB7A. Cancer Res 78:3834–3848. https://doi.org/10.1158/0008-5472.CAN-17-3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao ZH, Wang SF, Yu L, Wang J, Chang H, Yan WL, Fu K, Zhang J (2008) Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance. Chin Med J 121:445–449. https://doi.org/10.3779/j.issn.1009-3419.2007.06.09

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Z, Wang S, Zhang T (2008) Expression and clinical significance of Pokemon in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi 10:491–494. https://doi.org/10.3779/j.issn.1009-3419.2007.06.09

    Article  Google Scholar 

  78. Apostolopoulou K, Pateras IS, Evangelou K, Tsantoulis PK, Liontos M, Kittas C, Tiniakos DG, Kotsinas A, Cordon-Cardo C, Gorgoulis VG (2007) Gene amplification is a relatively frequent event leading to ZBTB7A (Pokemon) overexpression in non-small cell lung cancer. J Pathol 213:294–302. https://doi.org/10.1002/path.2222

    Article  CAS  PubMed  Google Scholar 

  79. Hojo N, Tatsumi N, Moriguchi N, Matsumura A, Morimoto S, Nakata J, Fujiki F, Nishida S, Nakajima H, Tsuboi A, Oka Y, Hosen N, Hayashi S, Sugiyama H, Oji Y (2016) A Zbtb7a proto-oncogene as a novel target for miR-125a. Mol Carcinog 55:2001–2009. https://doi.org/10.1002/mc.22446

    Article  CAS  PubMed  Google Scholar 

  80. Jiang L, Siu MK, Wong OG, Tam KF, Lam EW, Ngan HY, Le XF, Wong ES, Chan HY, Cheung AN (2010) Overexpression of proto-oncogene FBI-1 activates membrane type 1-matrix metalloproteinase in association with adverse outcome in ovarian cancers. Mol Cancer 9:1–12. https://doi.org/10.1186/1476-4598-9-318

    Article  CAS  Google Scholar 

  81. Aggarwal H, Aggarwal A, Agrawal DK (2011) Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells. Exp Mol Pathol 91:496–501. https://doi.org/10.1016/j.yexmp.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Razzak M (2013) Genetics: ZBTB7A suppresses castration-resistant prostate cancer. Nat Rev Clin Oncol 10:427. https://doi.org/10.1038/nrclinonc.2013.107

    Article  PubMed  Google Scholar 

  83. Wang G, Lunardi A, Zhang J, Chen Z, Ala U, Webster KA, Tay Y, Gonzalez-Billalabeitia E, Egia A, Shaffer DR, Carver B, Liu XS, Taulli R, Kuo WP, Nardella C, Signoretti S, Cordon-Cardo C, Gerald WL, Pandolfi PP (2013) Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet 45:739–746. https://doi.org/10.1038/ng.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lunardi A, Ala U, Epping MT, Salmena L, Clohessy JG, Webster KA, Wang G, Mazzucchelli R, Bianconi M, Stack EC, Lis R, Patnaik A, Cantley LC, Bubley G, Cordon-Cardo C, Gerald WL, Montironi R, Signoretti S, Loda M, Nardella C, Pandolfi PP (2013) A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat Genet 45:747–755. https://doi.org/10.1038/ng.2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cui J, Yang Y, Zhang C, Hu P, Kan W, Bai X, Liu X, Song H (2011) FBI-1 functions as a novel AR co-repressor in prostate cancer cells. Cell Mol Life Sci 68:1091–1103. https://doi.org/10.1007/s00018-010-0511-7

    Article  CAS  PubMed  Google Scholar 

  86. Han D, Chen S, Han W, Gao S, Owiredu JN, Li M, Balk SP, He HH, Cai C (2019) ZBTB7A mediates the transcriptional repression activity of the androgen receptor in prostate cancer. Cancer Res 79:5260–5271. https://doi.org/10.1158/0008-5472.CAN-19-0815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeon BN, Yoo JY, Choi WI, Lee CE, Yoon HG, Hur MW (2008) Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors. J Biological Chem 283:33199–33210. https://doi.org/10.1074/jbc.M802935200

    Article  CAS  Google Scholar 

  88. Komiya Y, Kurabe N, Katagiri K, Ogawa M, Sugiyama A, Kawasaki Y, Tashiro F (2008) A novel binding factor of 14–3-3beta functions as a transcriptional repressor and promotes anchorage-independent growth, tumorigenicity, and metastasis. J Biol Chem 283:18753–18764. https://doi.org/10.1074/jbc.M802530200

    Article  CAS  PubMed  Google Scholar 

  89. Liu XS, Genet MD, Haines JE, Mehanna EK, Wu S, Chen HI, Chen Y, Qureshi AA, Han J, Chen X, Fisher DE, Pandolfi PP, Yuan ZM (2015) ZBTB7A suppresses melanoma metastasis by transcriptionally repressing MCAM. Mol Cancer Res 13:1206–1217. https://doi.org/10.1158/1541-7786.MCR-15-0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mak VC, Wong OG, Siu MK, Wong ES, Ng WY, Wong RW, Chan KK, Ngan HY, Cheung AN (2015) FBI-1 is overexpressed in gestational trophoblastic disease and promotes tumor growth and cell aggressiveness of choriocarcinoma via PI3K/Akt signaling. Am J Pathol 185:2038–2048. https://doi.org/10.1016/j.ajpath.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  91. Kushwaha PP, Gupta S, Singh AK, Kumar S (2019) Emerging role of migration and invasion enhancer 1 (MIEN1) in cancer progression and metastasis. Front Oncol 9:1–13. https://doi.org/10.3389/fonc.2019.00868

    Article  CAS  Google Scholar 

  92. Guarnerio J, Riccardi L, Taulli R, Maeda T, Wang G, Hobbs RM, Song MS, Sportoletti P, Bernardi R, Bronson RT, Castillo-Martin M, Cordon-Cardo C, Lunardi A, Pandolfi PP (2015) A genetic platform to model sarcomagenesis from primary adult mesenchymal stem cells. Cancer Discov 5:396–409. https://doi.org/10.1158/2159-8290.CD-14-1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ding Y, Wang W, Feng M, Wang Y, Zhou J, Ding X, Zhou X, Liu C, Wang R, Zhang Q (2012) A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials 33:8893–8905. https://doi.org/10.1016/j.biomaterials.2012.08.057

    Article  CAS  PubMed  Google Scholar 

  94. Yuan B, Zhao L, Xian R, Zhao G (2012) Identification of novel HLA-A∗ 0201-restricted CTL epitopes from Pokemon. Cellular Immunol 274:54–60. https://doi.org/10.1016/j.cellimm.2012.01.009

    Article  CAS  Google Scholar 

  95. Cui J, Meng X, Gao X, Tan G (2010) Curcumin decreases the expression of Pokemon by suppressing the binding activity of the Sp1 protein in human lung cancer cells. Mol Biol Rep 37:1627–1632. https://doi.org/10.1007/s11033-009-9575-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Efforts are supported by the Department of Defense Grants W81XWH-18-1-0618 and W81XWH-19-1-0720 to SG. SK acknowledges University Grants Commission, India and Department of Science and Technology, India for providing financial support in the form of UGC-BSR Research Start-Up-Grant [No. F.30–372/2017 (BSR)] and DST-SERB Grant [EEQ/2016/000350]. SK acknowledges Central University of Punjab, Bathinda, India for providing Research Seed Money Grant [GP-25]. AKS, and KSP acknowledge CSIR-India, and DBT-India funding agencies for providing financial assistance in the form of Senior Research Fellowship. PPK and MS acknowledge Indian Council of Medical research for the financial support in the form of Senior Research fellowships [FileNo.5/3/8/81/ITR-F/2020, and FileNo.5/3/8/80/ITR-F/2020-ITR respectively].

Author information

Authors and Affiliations

Authors

Contributions

AKS, SV, SK, and SG have made substantial contributions to conception and writing of the manuscript. The figures and tables were developed by PPK, KSP, MS, AKS and SS. SV made substantial contributions to conception and data analysis from TCGA and other bio-portals and its interpretation. SG provided administrative, technical, and material support.

Corresponding authors

Correspondence to Shashank Kumar or Sanjay Gupta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Verma, S., Kushwaha, P.P. et al. Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Mol Biol Rep 48, 4703–4719 (2021). https://doi.org/10.1007/s11033-021-06405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06405-x

Keywords

Navigation