Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transcriptome analysis of terpenoid biosynthetic genes and simple sequence repeat marker screening in Eucommia ulmoides

Abstract

Trans-polyisoprene rubber is produced in the tissues of leaves, bark, and fruit of Eucommia ulmoides and is considered an important energy source. Transcript profiles of two tissues from E. ulmoides cv. Qinzhong No. 3, leaf and fruit, were analysed using the Illumina HiSeq 2000 system. In total, 104 million clean reads were obtained and assembled into 58,863 unigenes. Through gene functional classification, 28,091 unigenes (47.72%) were annotated and 65 unigenes have been hypothesized to encode proteins involved in terpenoid biosynthesis. In addition, 10,041 unigenes were detected as differentially expressed unigenes, and 29 of them were putatively related to terpenoid biosynthesis. The synthesis of trans-polyisoprene rubbers in E. ulmoides was hypothesised to be dominated by the mevalonate pathway. Farnesyl diphosphate synthase 2 (FPPS2) was considered a key component in the biosynthesis of trans-polyprenyl diphosphate. Rubber elongation factor 3 (REF3) might be involved in stabilising the membrane of rubber particles in E. ulmoides. To date, 351 simple sequence repeats (SSRs) were validated as polymorphisms from eight E. ulmoides plants (two parent plants and six F1 individuals), and these could act as molecular markers for genetic map density increase and breeding improvement of E. ulmoides.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Du H, Xie B, Shao S (2003) Prospects and research progress of gutta-percha. J Cent South For Univ 23(4):96–99

  2. 2.

    Hu SY (1979) A contribution to our knowledge of Tu-chung: Eucommia ulmoides. Am J Chin Med 7(1):5–37. https://doi.org/10.1142/s0192415x79000039

  3. 3.

    Sih CJ, Ravikumar PR, Huang FC, Buckner C (1976) Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver). J Am Chem Soc 98(17):5412–5413

  4. 4.

    Kawasaki T, Uezono K, Nakazawa Y (2000) Antihypertensive mechanism of food for specified health use: “Eucommia leaf glycoside” and its clinical application. J Health Sci 22:29–36

  5. 5.

    Chen LJ, Hu TW, Huang LC (1995) A protocol toward multiplication of the medicinal tree, Eucommia ulmoides Oliver. In Vitro Cell Dev Biol Plant 31(4):193–198

  6. 6.

    Guo T, Liu Y, Wei Y, Ma X, Fan Q, Ni J, Yin Z, Liu J, Wang S, Dong Y, Zhang J, Zhang L, Su H, Tan T (2015) Simultaneous qualitation and quantitation of natural trans-1,4-polyisoprene from Eucommia ulmoides Oliver by gel permeation chromatography (GPC). J Chromatogr B 1004:17–22. https://doi.org/10.1016/j.jchromb.2015.09.007

  7. 7.

    Chen R, Namimatsu S, Nakadozono Y, Bamba T, Nakazawa Y, Gyokusen K (2008) Efficient regeneration of Eucommia ulmoides from hypocotyl explant. Biol Plant 52(4):713–717. https://doi.org/10.1007/s10535-008-0137-x

  8. 8.

    Zhiqiang S, Fangdong L, Hongyan D, Jingle Z (2013) A novel silvicultural model for increasing biopolymer production from Eucommia ulmoides Oliver trees. Ind Crops Prod 42(1):216–222

  9. 9.

    Bamba T, Fukusaki E, Nakazawa Y, Kobayashi A (2002) In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver. Planta 215(6):934–939. https://doi.org/10.1007/s00425-002-0832-3

  10. 10.

    Du H, Du L, Xie BX, Tana W (2006) Dynamic accumulation of gutta-percha content in Eucommia ulmoides Oliv. leaves. J Cent South For Univ 26(2):1–6

  11. 11.

    Zhang K, Ma X, Ma M, Wang L, Zhang T (1999) A study on dynamic accumulation of metabolites during the growth of Eucommia ulmoides Oliv. Sci Silvae Sin 35(2):15–20

  12. 12.

    Du H (2006) Difference of Samara’s form characters and gutta-percha content from different producing areas associated with Eucommia ulmoides. Sci Silvae Sin 42(3):35–39

  13. 13.

    Du H, Du L, Li F (2004) Dynamic of gutta-percha formation and accumulation in Samara of Eucommia ulmoides. For Res 17(2):185–191

  14. 14.

    Du H, Du L, Li F, Xie B (2004) Individual variation of gutta-percha content in samaras of Eucommia ulmoides. For Res 6:706–710

  15. 15.

    Xie B, Du H, Du L (2005) Variations of gutta-percha content in samara from different Eucommia ulmoides forms. Sci Silvae Sin 41(6):144–146

  16. 16.

    Suzuki N, Uefuji H, Nishikawa T, Mukai Y, Yamashita A, Hattori M, Ogasawara N, Bamba T, Fukusaki E-i, Kobayashi A, Ogata Y, Sakurai N, Suzuki H, Shibata D, Nakazawa Y (2012) Construction and analysis of EST libraries of the trans-polyisoprene producing plant, Eucommia ulmoides Oliver . Planta 236(5):1405–1417. https://doi.org/10.1007/s00425-012-1679-x

  17. 17.

    Yin T, Cao X, Miao Q, Li C, Chen X, Zhou M, Jiang J (2011) Molecular cloning and functional analysis of an organ-specific expressing gene coding for farnesyl diphosphate synthase from Michelia chapensis Dandy. Acta Physiol Plant 33(1):137–144. https://doi.org/10.1007/s11738-010-0529-3

  18. 18.

    Baker J, Franklin DB, Parker J (1992) Sequence and characterization of the gcpE gene of Escherichia coli. Fems Microbiol Lett 73(1–2):175

  19. 19.

    Wouters J, Oudjama Y, Ghosh S, Stalon V, Droogmans L, Oldfield E (2003) Structure and mechanism of action of isopentenylpyrophosphate-dimethylallylpyrophosphate isomerase. J Am Chem Soc 125(11):3198–3199

  20. 20.

    Bamba T, Murayoshi M, Gyoksen K, Nakazawa Y, Okumoto H, Katto H, Fukusaki E, Kobayashi A (2010) Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides oliver. Z Für Nat C (J Biosci) 65(5–6):363–372

  21. 21.

    Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277(47):45188–45194

  22. 22.

    Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemangebilliard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in Tobacco bright yellow-2 cells. J Biol Chem 278(29):26666

  23. 23.

    Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6866–6871

  24. 24.

    Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2(1–2):3–16

  25. 25.

    Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52(1):86–97

  26. 26.

    Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94(8):1621–1634

  27. 27.

    Thulasiram HV, Hans K, Erickson A, Poulter CD (2008) A common mechanism for branching, cyclopropanation, and cyclobutanation reactions in the isoprenoid biosynthetic pathway. J Am Chem Soc 130(6):1966–1971

  28. 28.

    Wuyun TN, Wang L, Liu H, Wang X, Zhang L, Bennetzen JL, Li T, Yang L, Liu P, Du L (2018) The Hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis. Mol Plant 11(3):429

  29. 29.

    Tong Z, Wang D, Sun Y, Yang Q, Meng X, Wang L, Feng W, Li L, Wurtele ES, Wang X (2017) Comparative proteomics of rubber latex revealed multiple protein species of REF/SRPP family respond diversely to ethylene stimulation among different rubber tree clones. Int J Mol Sci 18(5):958

  30. 30.

    Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). Bmc Genom.https://doi.org/10.1186/1471-2164-11-726

  31. 31.

    Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-sEq. Genome Res 20(9):1238–1249. https://doi.org/10.1101/gr.106120.110

  32. 32.

    Liu H, Fu J, Du H, Hu J, Wuyun T (2016) De novo sequencing of Eucommia ulmoides flower bud transcriptomes for identification of genes related to floral development. Genom Data 9:105–110

  33. 33.

    Wang W, Zhang X (2017) Identification of the sex-biased gene expression and putative sex-associated genes in Eucommia ulmoides Oliver using comparative transcriptome analyses. Molecules 22(12):2255

  34. 34.

    Li Y, Wang D, Li Z, Wei J, Jin C, Liu M (2014) A molecular genetic linkage map of Eucommia ulmoides and Quantitative trait loci (QTL) analysis for growth traits. International Journal Of Molecular Sciences 15(2):2053–2074. https://doi.org/10.3390/ijms15022053

  35. 35.

    Dong J, Ma X, Wei Q, Peng S, Zhang S (2011) Effects of growing location on the contents of secondary metabolites in the leaves of four selected superior clones of Eucommia ulmoides. Ind Crops Prod 34(3):1607–1614

  36. 36.

    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–130. https://doi.org/10.1038/nbt.1883

  37. 37.

    Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

  38. 38.

    Rolf A, Amos B, Wu CH, Barker WC, Brigitte B, Serenella F, Elisabeth G, Hongzhan H, Rodrigo L, Michele M (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119. https://doi.org/10.1093/nar/gkh131

  39. 39.

    Minoru K, Susumu G, Shuichi K, Yasushi O, Masahiro H (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

  40. 40.

    Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN (2003) The COG database: an updated version includes eukaryotes. Bmc Bioinform 4(1):41–41

  41. 41.

    Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610

  42. 42.

    Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297. https://doi.org/10.1093/nar/gkl1031

  43. 43.

    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

  44. 44.

    Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 99:138–148

  45. 45.

    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

  46. 46.

    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2007) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

  47. 47.

    Bailey TL, Nadya W, Chris M, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

  48. 48.

    Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

  49. 49.

    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

  50. 50.

    Ye J, Jin C-F, Li N, Liu M-H, Fei Z-X, Dong L-Z, Li L, Li Z-Q (2018) Selection of suitable reference genes for qRT-PCR normalisation under different experimental conditions in Eucommia ulmoides Oliv. Sci Rep 8(1):15043. https://doi.org/10.1038/s41598-018-33342-w

  51. 51.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

  52. 52.

    Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422. https://doi.org/10.1007/s00122-002-1031-0

  53. 53.

    Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15. https://doi.org/10.1007/bf02772108

  54. 54.

    Zhang Q, Su Y, Zhang J (2013) Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides oliver leaf. Molecules 18(2):1857–1868

  55. 55.

    Wang L, Du H, Wuyun T-n (2016) Genome-wide identification of microRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high-throughput sequencing. Front Plant Sci 7:1632

  56. 56.

    Lesser MR, Parchman TL, Buerkle CA (2012) Cross-species transferability of SSR loci developed from transciptome sequencing in lodgepole pine. Mol Ecol Resour 12(3):448–455. https://doi.org/10.1111/j.1755-0998.2011.03102.x

  57. 57.

    Feng Y, Wang L, Fu J, Wuyun T, Du H, Tan X, Zou F, Li F (2016) Transcriptome sequencing discovers genes related to fatty acid biosynthesis in the seeds of Eucommia ulmoides. Genes Genom 38(3):275–283. https://doi.org/10.1007/s13258-015-0362-6

  58. 58.

    Feng Y, Zhang L, Fu J, Li F, Wang L, Tan X, Mo W, Cao H (2016) Characterization of glycolytic pathway genes using RNA-seq in developing kernels of Eucommia ulmoides. J Agric Food Chem 64(18):3712–3731. https://doi.org/10.1021/acs.jafc.5b05918

  59. 59.

    Ye J, Han W, Deng P, Jiang Y, Liu M, Li L, Li Z (2019) Comparative transcriptome analysis to identify candidate genes related to chlorogenic acid biosynthesis in Eucommia ulmoides Oliv. Trees.https://doi.org/10.1007/s00468-019-01865-y

  60. 60.

    Makita Y, Ng KK, Veera Singham G, Kawashima M, Hirakawa H, Sato S, Othman AS, Matsui M (2017) Large-scale collection of full-length cDNA and transcriptome analysis in Hevea brasiliensis. DNA Res 24(2):159–167

  61. 61.

    Kajiura H, Suzuki N, Tokumoto Y, Yoshizawa T, Takeno S, Fujiyama K, Kaneko Y, Matsumura H, Nakazawa Y (2017) Two Eucommia farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences. Biochimie 139:95–106

  62. 62.

    Ohnuma S, Hirooka K, Ohto C, Nishino T (1997) Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase: two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J Biol Chem 272(8):5192–5198. https://doi.org/10.1074/jbc.272.8.5192

  63. 63.

    Ohnuma S, Hirooka K, Tsuruoka N, Yano M, Ohto C, Nakane H, Nishino T (1998) A pathway where polyprenyl diphosphate elongates in prenyltransferase: insight into a common mechanism of chain length determination of prenyltransferases. J Biol Chem 273(41):26705–26713. https://doi.org/10.1074/jbc.273.41.26705

  64. 64.

    Okada K, Kainou T, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M (1998) Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from gluconobacter suboxydans. Eur J Biochem 255(1):52–59. https://doi.org/10.1046/j.1432-1327.1998.2550052.x

  65. 65.

    Dai LJ, Xiang QL, Yu LI, Nie ZY, Kang GJ, Duan CF, Zeng RZ (2012) Rubber particle protein analysis of Hevea brasiliensis by two dimensional 16-BAC/SDS-PAGE and mass spectrometry. Sci Agric Sin 45(11):2328–2338

  66. 66.

    Brown D, Feeney M, Ahmadi M, Lonoce C, Sajari R, Di CA, Frigerio L (2017) Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis. J Exp Bot 68(18):5045–5055

  67. 67.

    Posch A, Chen Z, Dunn MJ, Wheeler CH, Petersen A, Leubner-Metzger G, Baur X (2010) Latex allergen database. Electrophoresis 18(15):2803–2810

  68. 68.

    Hamidi MS, Gajic-Veljanoski O, Cheung AM (2003) Vitamin K and bone health. Proc Nutr Soc 62(4):839–843

  69. 69.

    Shea MK, Booth SL (2007) Role of vitamin K in the regulation of calcification. Int Congr Ser 1297(26):165–178

  70. 70.

    Nakazawa Y, Bamba T, Takeda T, Uefuji H, Harada Y, Li X, Chen R, Inoue S, Tutumi M, Shimizu T (2009) Production of Eucommia-rubber from Eucommia ulmoides Oliv. (Hardy Rubber Tree). Plant Biotechnol 26(1):71–79

  71. 71.

    Jang JC, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9(1):5–19

  72. 72.

    Li Y, Xu C, Lin X, Cui B, Wu R, Pang X (2014) De novo assembly and characterization of the fruit transcriptome of Chinese Jujube (Ziziphus jujuba Mill.) using 454 pyrosequencing and the development of novel tri-nucleotide SSR markers. PLoS ONE 9(9):e106438

  73. 73.

    Jia H, Yang H, Sun P, Li J, Zhang J, Guo Y, Han X, Zhang G, Lu M, Hu J (2016) De novo transcriptome assembly, development of EST-SSR markers and population genetic analyses for the desert biomass willow, Salix psammophila. Sci Rep 6(1):39591. https://doi.org/10.1038/srep39591

  74. 74.

    Gang N, Lu T, Yajie Z, Linkai H, Xiao M, Xin C, Ling P, Xu Z, Xinquan Z (2017) Development of SSR markers based on transcriptome sequencing and association analysis with drought tolerance in perennial grass Miscanthus from China. Front Plant Sci 8:801. https://doi.org/10.3389/fpls.2017.00801

  75. 75.

    Yan Z, Wu F, Luo K, Zhao Y, Yan Q, Zhang Y, Wang Y, Zhang J (2017) Cross-species transferability of EST-SSR markers developed from the transcriptome of Melilotus and their application to population genetics research. Sci Rep 7(8):17959. doi:https://doi.org/10.1038/s41598-017-18049-8

Download references

Acknowledgements

The work was funded by the Shaanxi Key research and development (R&D) Program (2019NY-012), Scientific Startup Foundation for Doctor of Northwest A&F University (Z109021715) and the General Financial Grant from the China Postdoctoral Science Foundation (2018M633594).

Author information

ZL and CJ concerned and designed the research. CJ, YL, SW and ML performed the experiments. CJ conducted the work of data analysis and paper writing. CJ, ZL, LL and JY revised the paper.

Correspondence to Zhouqi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Li, Z., Li, Y. et al. Transcriptome analysis of terpenoid biosynthetic genes and simple sequence repeat marker screening in Eucommia ulmoides. Mol Biol Rep (2020). https://doi.org/10.1007/s11033-020-05294-w

Download citation

Keywords

  • Eucommia ulmoides
  • Transcriptome
  • Differentially expressed genes (DEGs)
  • Terpenoid biosynthesis
  • Simple sequence repeat (SSR)