Investigating molecular evolutionary forces and phylogenetic relationships among melatonin precursor-encoding genes of different plant species

  • Moncef Boulila
  • Abdelaleim Ismail ElSayedEmail author
  • Mohammed Suhail Rafudeen
  • Ahmad Alsayed Omar
Original Article


A total of 53 plant species accessions from different geographic regions, including four melatonin precursor-coding genes obtained from Arachis hypogaea (ASMT1, 2, 3 and T5H) underwent extensive molecular evolutionary analyses. Evolutionary relationships were inferred and showed that dichotomous bifurcating trees did not reflect the true phylogeny since reticulate events took place due likely to recombination. Thus, a phylogenetic network was reconstructed for each type of enzyme and highlighted the presence of such incompatibilities. GARD algorithm pointed out that ASMT1, 2, and 3-coding gene sequences contained recombination sites with significant topological incongruence on both sides of the breakpoints (for ASMT1, and 2), while only on one side of the breakpoints for ASMT3. In contrast, no statistically recombination signal was recorded in T5H-coding gene. Furthermore, gene duplication was localized in the ancestor of a monophyletic group of Populus accessions. Selection pressure was assessed using several statistical models incorporated in HyPhy package through the datamonkey web server. It was demonstrated that numerous individual sites and tree branches experienced predominantly purifying selection. In contrast, the BUSTED model evidenced a gene-wide episodic diversifying selection in the phylogeny of only three enzyme-coding genes (ASMT, and 2, and T5H). Likewise, it was shown that Mixed Effects Model of Episodic Selection (MEME) model detected only episodic positively selected sites in all four melatonin enzymes-coding genes; whereas, REL model failed to detect neither positive nor negative selection in tested individual sites of ASMT3-coding gene.


Melatonin Molecular evolution Phylogenetic analysis Peanut Recombination Natural selection Bioinformatics Gene duplication 



The authors thank the Egyptian government for granting a visiting scholarship and the Zagazig University for supporting the research.

Author contributions

MB, AE and AAO conceived and directed this work, designed the experiments, analyzed the data, wrote and revised the manuscript. AIE, and AAO supported PCR and cloning analysis. MSR provided suggestions and revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary material

11033_2020_5249_MOESM1_ESM.docx (123 kb)
Supplementary material 1 (DOCX 122 kb)


  1. 1.
    Ehrlich SD, Bierne H, d'Alençon E, Vilette D, Petranovic M, Noirot P, Michel B (1993) Mechanisms of illegitimate recombination. Gene 135(1–2):161–166CrossRefGoogle Scholar
  2. 2.
    Rand DM, Kann LM (1998) Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Mutation and evolution. Springer, Dordrecht, pp 393–407CrossRefGoogle Scholar
  3. 3.
    Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR 1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65:12500. CrossRefGoogle Scholar
  4. 4.
    Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol. CrossRefGoogle Scholar
  5. 5.
    Tan D-X et al (2014) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci 15:15858–15890. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347:22Google Scholar
  7. 7.
    Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci 85:2444–2448. CrossRefPubMedGoogle Scholar
  8. 8.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefGoogle Scholar
  9. 9.
    Altschul SF, Boguski MS, Gish W, Wootton JC (1994) Issues in searching molecular sequence databases. Nat Genet 6:119CrossRefGoogle Scholar
  10. 10.
    Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol Biol Evol 9:678–687. CrossRefPubMedGoogle Scholar
  13. 13.
    Huson DH, Bryant D (2005) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. CrossRefPubMedGoogle Scholar
  14. 14.
    Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. CrossRefPubMedGoogle Scholar
  15. 15.
    Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096–3098. CrossRefPubMedGoogle Scholar
  16. 16.
    Akaike H (1974) A new look at the statistical model identification. Selected Papers of Hirotugu Akaike. Springer, New York, pp 215–222CrossRefGoogle Scholar
  17. 17.
    Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179CrossRefGoogle Scholar
  18. 18.
    Pond SLK, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Statistical methods in molecular evolution. Springer, New York, pp 125–181CrossRefGoogle Scholar
  19. 19.
    Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. CrossRefPubMedGoogle Scholar
  20. 20.
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedPubMedCentralGoogle Scholar
  22. 22.
    Korber B (2002) HIV sequence sigmatires and similarities. Computational and evolutionary analysis of HIV molecular sequences. Springer, Boston, pp 55–72CrossRefGoogle Scholar
  23. 23.
    Pond SLK, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. CrossRefPubMedGoogle Scholar
  24. 24.
    Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22:2493–2499. CrossRefPubMedGoogle Scholar
  27. 27.
    Delport W, Poon AF, Frost SD, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pond SLK, Frost SD (2004) A genetic algorithm approach to detecting lineage-specific variation in selection pressure. Mol Biol Evol 22:478–485. CrossRefPubMedGoogle Scholar
  29. 29.
    Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren K, Pollner T, Martin DP, Smith DM, Scheffler K, Kosakovsky Pond SL (2015) Gene-wide identification of episodic selection. Mol Biol Evol 32:1365–1371. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bapteste E et al (2013) Networks: expanding evolutionary thinking. Trends Genet 29:439–441. CrossRefPubMedGoogle Scholar
  32. 32.
    Sugiura N (1978) Further analysts of the data by akaike's information criterion and the finite corrections: further analysts of the data by akaike's. Commun Stat Theory Methods 7:13–26. CrossRefGoogle Scholar
  33. 33.
    Pond SLK, Frost SD, Grossman Z, Gravenor MB, Richman DD, Brown AJL (2006) Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comput Biol 2:e62. CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang Y, Li H, Yao Y, Liu W, Ni Q, Zhang M, Xu H (2015) Uneven evolutionary rate of the melatonin-related receptor gene (GPR50) in primates. Genet Mol Res 14:680–690. CrossRefPubMedGoogle Scholar
  35. 35.
    Xu J et al (2019) Molecular evolution of tryptophan hydroxylases in vertebrates: a comparative genomic survey. Genes 10:203. CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Université de Sfax- Institut de L’Olivier- B.P. 14SousseTunisia
  2. 2.Biochemistry Department, Faculty of AgricultureZagazig UniversityZagazigEgypt
  3. 3.Department of Molecular and Cell BiologyUniversity of Cape TownRondeboschSouth Africa
  4. 4.Citrus Research and Education CenterUniversity of Florida, IFASLake AlfredUSA

Personalised recommendations