Advertisement

d-ribose and pathogenesis of Alzheimer’s disease

  • Mehjbeen Javed
  • Md. Irshad Ahmad
  • Hina Javed
  • Sufia NaseemEmail author
Review

Abstract

It is estimated that the global prevalence of dementia will rise as high as 24 million and predicted to be double in every 20 years which is attributed to the fact that the ageing population is increasing and so more individuals are at risk of developing neurodegenerative diseases like Alzheimer’s. Many scientists favored glycation of proteins such as tau, amyloid beta (Aβ) etc. as one of the important risk factor in Alzheimer’s disease (AD). Since, d-ribose shows highest glycation ability among other sugars hence, produces advanced glycation end products (AGEs) rapidly. However, there are several other mechanisms suggested by researchers through which d-ribose may cause cognitive impairments. There is a concern related to diabetic patients since they also suffer from d-ribose metabolism, may be more prone to AD risk. Thus, it is imperative that the pathogenesis and the pathways involved in AD progression are explored in the light of ribosylation and AGEs formation for identifying suitable diagnostics marker for early diagnosis or finding promising therapeutic outcomes.

Keywords

AGE Alzheimer’s Amyloid β d-ribose Glycation RAGE Tau 

Notes

Acknowledgements

The authors are thankful to the Chairperson of Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh.

Author contributions

MJ, MIA and HJ have equal contributions. SN guided, conceptualized and provided intellectual input and revise the final draft of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dhanoa TS, Housner JA (2007) Ribose: more than a simple sugar? Curr Sports Med Rep 6:254–257PubMedPubMedCentralGoogle Scholar
  2. 2.
    Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol Biosph 18:71–85PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sutherland JD (2010) Ribonucleotides. Cold Spring Harb Perspect Biol 2:a005439PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wei Y et al (2012) D-ribose in glycation and protein aggregation. Biochim Biophys Acta. 1820:488–494PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wu B et al (2015) Gavage of D-Ribose induces Aβ-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 6:33Google Scholar
  6. 6.
    Seuffer R (1977) A new method for the determination of sugars in cerebrospinal fluid (author's transl). J Clin Chem Clin Biochem 15:663–668PubMedPubMedCentralGoogle Scholar
  7. 7.
    Cai Y, Liu J, Shi Y, Liang L, Mou S (2005) Determination of several sugars in serum by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 1085:98–103PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Xu WL, von Strauss E, Qiu CX, Winblad B, Fratiglioni L (2009) Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52:1031–1039PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Su T, Xin L, He YG, Wei Y, Song YX, Li WW, Wang XM, He RQ (2013) The abnormally high level of Uric D-ribose for Type-2 diabetics. Progress Biochem Biophys 40:816–825Google Scholar
  10. 10.
    Lyu J, Yu LX, He YG, Wei Y, Rong-Qiao H et al (2019) A brief study of the correlation of urine D-ribose with MMSE Scores of patients with alzheimer’s disease and cognitively normal participants. Am J Urol Res 4:018–023Google Scholar
  11. 11.
    Schmidt R, Assem-Hilger E, Benke T, Dal-Bianco P, Delazer M, Ladurner G et al (2008) Sex differences in Alzheimer’s disease. Neuropsychiatry 22:1–15Google Scholar
  12. 12.
    Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol 6:37–48PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ et al (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570:332PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mayeux R, Stern Y (2012) Epidemiology of Alzheimer’s Disease. Cold Spring Harb Perspect Med 2:a006239PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bloom GS (2014) Amyloid β and Tau. The trigger and bullet in Alzheimer’s disease pathogenesis. JAMA Neurol 71:505–508PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Xie A, Gao J, Xu L, Meng D (2014) Shared mechanisms of neurodegeneration in alzheimer’s disease and parkinson’s disease. BioMed Res Int 2014:1–8Google Scholar
  17. 17.
    Oshiro S, Morioka MS, Kikuchi M (2011) Dysregulation of iron metabolism in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Adv Pharmacol Sci.  https://doi.org/10.1155/2011/378278 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Finder VH, Glockshuber R (2007) Amyloid β Aggregation. Neurodegener Dis 4:13–27.  https://doi.org/10.1159/000100355 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dubois B et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDSADRDA criteria. Lancet Neurol 6:734–746PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bondi MW et al (2002) Cognitive and neuropathologic correlates of Stroop Color-Word Test performance in Alzheimer’s disease. Neuropsychology 16:335–343PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Haass C et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Johnson GV, Bailey CD (2003) The p38 MAP kinase signaling pathway in Alzheimer’s disease. Exp Neurol 183:263–268PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sandbrink R, Masters CL, Beyreuther K (1996) APP gene family: alternative splicing generates functionally related isoforms. Ann NY Acad Sci 777:281–287PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kang J et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Epis R, Marcello E, Gardoni F, Luca MD (2012) Alpha, beta-and gamma-secretases in Alzheimer’s disease. Front Biosci S4:1126–1150CrossRefGoogle Scholar
  28. 28.
    Sinha S et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zhang YW, Thompson R, Zhang H, Huaxi Xu (2011) APP processing in Alzheimer’s disease. Mole Brain 4:3CrossRefGoogle Scholar
  30. 30.
    Hurtado DE et al (2010) Abeta accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177:1977–1988PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Leroy K et al (2012) Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. Am J Pathol 181:1928–1940PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Nussbaum JM et al (2012) Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 485:651–655PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Seward ME et al (2013) Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 126:1278–1286PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rhein V, Song X, Wiesner A et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci USA 106(47):20057–20062PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yao J, Irwin RW, Zhao L et al (2009) Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 106(34):14670–14675PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Islam BU, Jabir NR, Tabrez S (2019) The role of mitochondrial defects and oxidative stress in Alzheimer’s disease. J Drug Target.  https://doi.org/10.1080/1061186X.2019.1584808 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gotz J, Chen F, Van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495PubMedCrossRefGoogle Scholar
  38. 38.
    Roberson ED et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ittner LM et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99:6364–6369PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    King ME et al (2006) Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid. J Cell Biol 175:541–546PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vossel KA et al (2010) Tau reduction prevents A beta-induced defects in axonal transport. Science 330:198PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Shipton OA et al (2011) Tau protein is required for amyloid beta-induced impairment of hippocampal long-term potentiation. J Neurosci 31:1688–1692PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Zempel H et al (2013) Amyloid-β oligomers induce synaptic damage via tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 32:2920–2937PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    La Ferla FM (2008) Amyloid β and tau in Alzheimer’s disease. Nat Rev Neurosci 12:65–72Google Scholar
  46. 46.
    Bunn HF, Higgins PJ (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213:222PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Han C, Lu Y, Wei Y, Liu Y, He R (2011) D-ribose induces cellular protein glycation and impairs mouse spatial cognition. PLoS ONE 6:e24623PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Harvey SC, Prabhakaran M (1986) Ribose puckering: structure, dynamics, energetics, and the pseudorotation cycle. J Am Chem Soc 108:6128–6136CrossRefGoogle Scholar
  49. 49.
    Chen L, Wei Y, Wang X, He R (2009) D-ribosylated Tau forms globular aggregates with high cytotoxicity. Cell Mol Life Sci 66:2559–2571PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chen L, Wei Y, Wang X, He R (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS ONE 5:e9052PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wei Y, Chen L, Chen J, Ge L, He RQ (2009) Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol 10:10PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Han C et al (2014) D-ribosylation induces cognitive impairment through RAGE-dependent astrocytic inflammation. Cell Death Dis 5:e1117PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Monnier VM (1990) Non-enzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 45:B105–B111PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Syrovy I (1994) Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods 28:115–121PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Culbertson SM, Vassilenko EI, Morrison LD, Ingold KU (2003) Paradoxical impact of antioxidants on post-Amadori glycoxidation: Counter intuitive increase in the yields of pentosidine and Nepsilon-carboxymethyl lysine using a novel multifunctional pyridoxamine derivative. J Biol Chem 278:38384–38394PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bokiej M, Livermore AT, Harris AW, Onishi AC, Sandwick RK (2011) Ribose sugars generate internal glycation cross-links in horse heart myoglobin. Biochem Biophys Res Commun 407:191–196PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lannuzzi C, Borriello M, Carafa V, Altucci L, Vitiello M, Balestrieri ML, Ricci G, Irace G, Sirangelo I (2016) D-ribose-glycation of insulin prevents amyloid aggregation and produces cytotoxic adducts. Biochim Biophys Acta 1862:93–104CrossRefGoogle Scholar
  58. 58.
    Emendato A et al (2018) Glycation affects fibril formation of Aβ peptides. J Biol Chem 293:13100–13111PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wei Y, Han C, Wang Y, Wu B, Su T, Liu Y et al (2015) Ribosylation triggering Alzheimer’s disease-like Tau hyperphosphorylation via activation of CaMKII. Aging Cell 14:754–763PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wu BB, Wei Y, Wang YJ, Su T, Zhou L, Liu Y et al (2015) Gavage of D-ribose induces A beta-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice. Oncotarget 6:34128PubMedPubMedCentralGoogle Scholar
  61. 61.
    Sims RC, Madhere S, Gordon S, Clark E Jr, Abayomi KA, Callender CO et al (2008) Relationships among blood pressure, triglycerides and verbal learning in African Americans. J Natl Med Assoc 100:1193–1198PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chen Y, Yu L, Wei Y, Long Y, Xu Y, He T et al (2019) D-ribose increases triglyceride via upregulation of DGAT in the liver. Sci China Life Sci 62:858–861PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chen Y, Yu L, Wang Y, Wei Y, Xu Y, He T et al (2019) D-ribose contributes to the glycation of serum protein. Biochim Biophys Acta Mol Basis Dis 9:2285–2292CrossRefGoogle Scholar
  64. 64.
    Chen XX, Su T, Chen Y, He YG, Liu Y, Xu Y et al (2017) D-ribose as a contributor to glycated haemoglobin. EBio Med 25:143–153Google Scholar
  65. 65.
    Fu JP, Mo WC, Liu Y, Bartlett PF, He RQ (2016) Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells. Protein Cell 7:624–637PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhang HT, Zhang ZJ, Mo WC, Hu PD, Ding HM, Liu Y et al (2017) Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase. Protein Cell 8:527–537PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bisht K, Sharma K, Tremblay ME (2018) Chronic stress as a risk factor for Alzheimer’s disease: roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 9:9–21PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ahmed N (2005) Advanced glycation end products–role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gkogkolou P, Böhm M (2012) Advanced glycation end products, Key players in skin aging? Dermato-Endocrinol 4:259–270CrossRefGoogle Scholar
  70. 70.
    Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25:275–281PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Cance Mc DR et al (1993) Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478CrossRefGoogle Scholar
  72. 72.
    Lyons TJ et al (1991) Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes 40:1010–1015PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Miyata T, Ypersele CV, Strihou KD, Baynes JWK (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Dukic SS, Schinzel R, Riederer P, Munch G (2001) AGES in brain ageing: AGE inhibitors as neuroprotective and anti-dementia drugs? Biogerontology 2:19–34CrossRefGoogle Scholar
  75. 75.
    Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kikuchi S et al (2000) Detection of an Amadori product, 1-hexitol-lysine, in the anterior horn of the amyotrophic lateral sclerosis and spinobulbar muscular atrophy spinal cord: evidence for early involvement of glycation in motoneuron diseases. Acta Neuropathol 99:63–66PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jabir NR, Ahmad S, Tabrez S (2017) An insight on the association of glycation with hepatocellular carcinoma. Sem Can Biol.  https://doi.org/10.1016/j.semcancer.2017.06.005 CrossRefGoogle Scholar
  78. 78.
    Cai Z et al (2015) Role of RAGE in Alzheimer’s Disease. Cell Mol Neurobiol.  https://doi.org/10.1007/s10571-015-0233-3 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Salahuddin P, Rabbani G, Khan RH (2014) The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell Mol Biol Lett 19:407–437PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Takeuchi M et al (2000) Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol 59:1094–1105PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Woltjer RL, Maezawa I, Ou JJ, Montine KS, Montine TJ (2003) Advanced glycation end product precursor alters intracellular amyloid-beta/A beta PP carboxy-terminal fragment aggregation and cytotoxicity. J Alzheimers Dis 5:467–476PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Xu L, Zang P, Feng B, Qian Q (2014) Atorvastatin inhibits the expression of RAGE induced by advanced glycation end products on aortas in healthy Sprague-Dawley rats. Diabetol Metab Syndr 6:102PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wautier MP, Tessier FJ, Wautier JL (2014) Advanced glycation end products: a risk factor for human health. Ann Pharm Fr 72:400–408PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Yu SL, Wong CK, Szeto CC, Li EK, Cai Z, Tam LS (2014) Members of the receptor for advanced glycation end products axis as potential therapeutic targets in patients with lupus nephritis. Lupus 24:675–686PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Farmer DG, Ewart MA, Mair KM, Kennedy S (2014) Soluble receptor for advanced glycation end products (sRAGE) attenuates haemodynamic changes to chronic hypoxia in the mouse. Pulm Pharmacol Ther 29:7–14PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Heilman RM, Otoni CC, Jergens AE, Grutzner N, Suchodolski JS, Steiner JM (2014) Systemic levels of the anti-inflammatory decoy receptor soluble RAGE (receptor for advanced glycation end products) are decreased in dogs with inflammatory bowel disease. Vet Immunol Immunopathol 161:184–192CrossRefGoogle Scholar
  87. 87.
    Sheng Z, Liu Y, Chen L, He R (2008) Nonenzymatic glycation of α-Synuclein and changes in its conformation. Prog Biochem Biophys 35:1202–1208Google Scholar
  88. 88.
    Sattarahmady N, Moosavi-Movahedi AA, Habibi-Rezaei M, Ahmadian S, Saboury AA, Heli H, Sheibani N (2008) Detergency effects of nanofibrillar amyloid formation on glycation of human serum albumin. Carbohydr Res 343:2229–2234PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Wei Y, Miao JY, Liu Y (2012) Endogenous and exogenous factors in hyperphosphorylation of Tau in Alzheimer’s disease. Prog Biochem Biophys 39:778–784CrossRefGoogle Scholar
  90. 90.
    Love S, Barber R, Wilcock GK (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain 122:247–253PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Wiseman FK et al (2018) Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 141:2457–2474PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Miles WR, Root HF (1922) Psychologic tests applied to diabetic patients. Arch Intern Med (Chic) 30:767–777.  https://doi.org/10.1001/archinte.1922.00110120086003 CrossRefGoogle Scholar
  93. 93.
    Sima AA (2010) Encephalopathies: the emerging diabetic complications. Acta Diabetol 47:279–293.  https://doi.org/10.1007/s00592-010-0218-0 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhu F, Jiang B, Ren R, Yang L (2018) Amplitude of peroneal compound motor action potential increases in type 2 diabetes with thyroid autoimmunity. Sci China Life Sci 61:988–991PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer’s disease and decline in cognitive function. Arch Neurol 61:661–666PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Yu L, Chen Y, Xu Y, He Y, Wei Y, He R (2019) D-ribose is elevated in T1DM patients and can be involved in the onset of encephalopathy. Aging 11:4943–4969PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chen Y, Yu L, Wang Y, Wei Y, Xu Y, He T, He Y (2019) D-Ribose contributes to the glycation of serum protein. BBA Mol Basis Dis.  https://doi.org/10.1016/j.bbadis.2019.05.005 CrossRefGoogle Scholar
  98. 98.
    Wang Y, Shi C, Chen Y, Yu L, Li Y, Wei Y, Li W, He R (2019) Formaldehyde produced from d-ribose under neutral and alkaline conditions. Toxicol Rep 1:298–304CrossRefGoogle Scholar
  99. 99.
    Wu B, Wang Y, Shi C, Chen Y, Yu L, Li J, Li W, Wei Y, He R (2019) Ribosylation-derived advanced glycation end products induce tau hyperphosphorylation through brain-derived neurotrophic factor reduction. J Alzheimer Dis.  https://doi.org/10.3233/JAD-190158 CrossRefGoogle Scholar
  100. 100.
    Nakamura A et al (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554:249–254PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Martins RN et al (2018) Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies—gains from AIBL and DIAN cohort studies. J Alzheimers Dis 62:965–992PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Butterfield AD, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer’s disease. Nat Rev Neurosci.  https://doi.org/10.1038/s41583-019-0132-6 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Jabir NR, Khan FR, Tabrez S (2018) Cholinesterase targeting by polyphenols: a therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther.  https://doi.org/10.1111/cns.12971 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Mehjbeen Javed
    • 1
  • Md. Irshad Ahmad
    • 2
    • 3
  • Hina Javed
    • 4
  • Sufia Naseem
    • 5
    Email author
  1. 1.Aquatic Toxicology Research Laboratory, Department of ZoologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Biochemistry, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia
  3. 3.Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
  4. 4.Department of ChemistryAligarh Muslim UniversityAligarhIndia
  5. 5.Department of Biochemistry, Faculty of MedicineAligarh Muslim UniversityAligarhIndia

Personalised recommendations