Molecular Biology Reports

, Volume 47, Issue 2, pp 1361–1369 | Cite as

Hsa-miR-584-5p as a novel candidate biomarker in Turkish men with severe coronary artery disease

  • Neslihan CobanEmail author
  • Dilek Pirim
  • Aycan Fahri Erkan
  • Berkcan Dogan
  • Berkay Ekici
Original Article


Coronary artery disease (CAD) is still the preliminary cause of mortality and morbidity in the developed world. Identification of novel predictive and therapeutic biomarkers is crucial for accurate diagnosis, prognosis and treatment of the CAD. The aim of this study was to detect novel candidate miRNA biomarker that may be used in the management of CAD. We performed miRNA profiling in whole blood samples of angiographically confirmed Turkish men with CAD and non-CAD controls with insignificant coronary stenosis. Validation of microarray results was performed by qRT-PCR in a larger cohort of 62 samples. We subsequently assessed the diagnostic value of the miRNA and correlations of miRNA with clinical parameters. miRNA-target identification and network analyses were conducted by Ingenuity Pathway Analysis (IPA) software. Hsa-miR-584-5p was one of the top significantly dysregulated miRNA observed in miRNA microarray. Men-specific down-regulation (p = 0.040) of hsa-miR-584-5p was confirmed by qRT-PCR. ROC curve analysis highlighted the potential diagnostic value of hsa-miR-584-5p with a power area under the curve (AUC) of 0.714 and 0.643 in men and in total sample, respectively. The expression levels of hsa-miR-584-5p showed inverse correlation with stenosis and Gensini scores. IPA revealed CDH13 as the only CAD related predicted target for the miRNA with biological evidence of its involvement in CAD. This study suggests that hsa-miR-584-5p, known to be tumor suppressor miRNA, as a candidate biomarker for CAD and highlighted its putative role in the CAD pathogenesis. The validation of results in larger samples incorporating functional studies warrant further research.


Atherosclerosis miRNA Microarray IPA T-Cadherin Stenosis 



This study was supported by The Research Support Unit of Istanbul University as the Project Numbers: 51865 and 47372.

Author contributions

NC, DP designed and conducted the experiments. AFE. and BE contributed materials. NC, DP, BD contributed to data analysis and wrote the manuscript. NC, DP, BD, AFE and BE interpreted the results. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11033_2019_5235_MOESM1_ESM.docx (34 kb)
Supplementary file1—Supplementary Tables 1 to 5 (DOCX 34 kb)
11033_2019_5235_MOESM2_ESM.tif (57.4 mb)
Supplementary file2—Supplementary Figure 1 (TIF 58.818 kb)
11033_2019_5235_MOESM3_ESM.tif (94.1 mb)
Supplementary file3—Supplementary Figure 2 (TIF 96,362 kb)
11033_2019_5235_MOESM4_ESM.tif (92.3 mb)
Supplementary file4—Supplementary Figure 3 (TIF 94,488 kb)
11033_2019_5235_MOESM5_ESM.tif (292.5 mb)
Supplementary file5—Supplementary Figure 4 (TIF 299,530 kb)


  1. 1.
    Li Y, Wang DW, Chen Y, Chen C, Guo J, Zhang S, Sun Z, Ding H, Yao Y, Zhou L, Xu K, Song C, Yang F, Zhao B, Yan H, Wang WJ, Wu C, Lu X, Yang X, Dong J, Zheng G, Tian S, Cui Y, Jin L, Liu G, Cui H, Wang S, Jiang F, Wang C, Erdmann J, Zeng L, Huang S, Zhong J, Ma Y, Chen W, Sun J, Lei W, Chen S, Rao S, Gu D, Schunkert H, Tian XL (2018) Genome-wide association and functional studies identify SCML4 and THSD7A as novel susceptibility genes for coronary artery disease. Arterioscler Thromb Vasc Biol 38(4):964–975. CrossRefPubMedGoogle Scholar
  2. 2.
    Zeller T, Seiffert M, Muller C, Scholz M, Schaffer A, Ojeda F, Drexel H, Mundlein A, Kleber ME, Marz W, Sinning C, Brunner FJ, Waldeyer C, Keller T, Saely CH, Sydow K, Thiery J, Teupser D, Blankenberg S, Schnabel R (2017) Genome-wide association analysis for severity of coronary artery disease using the gensini scoring system. Front Cardiovasc Med 4:57. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    van der Harst P, Verweij N (2018) Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res 122(3):433–443. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sayols-Baixeras S, Lluis-Ganella C, Lucas G, Elosua R (2014) Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet 7:15–32. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kovacic JC (2017) Unraveling the complex genetics of coronary artery disease. J Am Coll Cardiol 69(7):837–840. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Johnson JL (2019) Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vascul Pharmacol 114:31–48. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lu Y, Thavarajah T, Gu W, Cai J, Xu Q (2018) Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol 38(9):e159–e170. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39(7):1073–1084. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Romaine SP, Tomaszewski M, Condorelli G, Samani NJ (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101(12):921–928. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  11. 11.
    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Abrahamsson A, Dabrosin C (2015) Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo. Oncotarget 6(26):22959–22969CrossRefGoogle Scholar
  13. 13.
    Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stahler C, Meese E, Keller A (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865–3877. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yu L, Zhao J, Gao L (2018) Predicting potential drugs for breast cancer based on miRNA and tissue specificity. Int J Biol Sci 14(8):971–982. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 103(8):2746–2751. CrossRefPubMedGoogle Scholar
  16. 16.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ono K, Kuwabara Y, Han J (2011) MicroRNAs and cardiovascular diseases. FEBS J 278(10):1619–1633. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Malik R, Mushtaque RS, Siddiqui UA, Younus A, Aziz MA, Humayun C, Mansoor K, Latif MA, Waheed S, Assad S, Khan I, Bukhari SM, DelCampo D, Adus A, Gannarapu S (2017) Association between coronary artery disease and MicroRNA: literature review and clinical perspective. Cureus 9(4):e1188. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang L, Zhang Y, Zhao Y, Wang Y, Ding H, Xue S, Li P (2018) Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin Ther Pat 28(8):591–601. CrossRefPubMedGoogle Scholar
  20. 20.
    Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nishiguchi T, Imanishi T, Akasaka T (2015) MicroRNAs and cardiovascular diseases. Biomed Res Int 2015:682857. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dangwal S, Bang C, Thum T (2012) Novel techniques and targets in cardiovascular microRNA research. Cardiovasc Res 93(4):545–554. CrossRefPubMedGoogle Scholar
  23. 23.
    Fils-Aime N, Dai M, Guo J, El-Mousawi M, Kahramangil B, Neel JC, Lebrun JJ (2013) MicroRNA-584 and the protein phosphatase and actin regulator 1 (PHACTR1), a new signaling route through which transforming growth factor-beta Mediates the migration and actin dynamics of breast cancer cells. J Biol Chem 288(17):11807–11823. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L (1852) Tong Q (2015) miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta 9:1743–1754. CrossRefGoogle Scholar
  25. 25.
    Xiang J, Wu Y, Li DS, Wang ZY, Shen Q, Sun TQ, Guan Q, Wang YJ (2015) miR-584 suppresses invasion and cell migration of thyroid carcinoma by regulating the target oncogene ROCK1. Oncol Res Treat 38(9):436–440. CrossRefPubMedGoogle Scholar
  26. 26.
    Wang XP, Deng XL, Li LY (2014) MicroRNA-584 functions as a tumor suppressor and targets PTTG1IP in glioma. Int J Clin Exp Pathol 7(12):8573–8582PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ueno K, Hirata H, Shahryari V, Chen Y, Zaman MS, Singh K, Tabatabai ZL, Hinoda Y, Dahiya R (2011) Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma. Br J Cancer 104(2):308–315. CrossRefPubMedGoogle Scholar
  28. 28.
    Weber M, Baker MB, Patel RS, Quyyumi AA, Bao G, Searles CD (2011) MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract 2011:532915. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cui C, Yang W, Shi J, Zhou Y, Yang J, Cui Q, Zhou Y (2018) Identification and Analysis of Human Sex-biased MicroRNAs. Genom Proteom Bioinform 16(3):200–211. CrossRefGoogle Scholar
  30. 30.
    Guo L, Liang T, Yu J, Zou Q (2016) A comprehensive analysis of miRNA/isomiR expression with gender difference. PLoS ONE 11(5):e0154955. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Guo L, Zhang Q, Ma X, Wang J, Liang T (2017) miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression. Sci Rep 7:39812. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Baulina N, Osmak G, Kiselev I, Popova E, Boyko A, Kulakova O, Favorova O (2019) MiRNAs from DLK1-DIO3 imprinted locus at 14q32 are associated with multiple sclerosis: gender-specific expression and regulation of receptor tyrosine kinases signaling. Cells 1:1. CrossRefGoogle Scholar
  33. 33.
    Ivanov D, Philippova M, Tkachuk V, Erne P, Resink T (2004) Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293(2):207–218CrossRefGoogle Scholar
  34. 34.
    Sternberg JWM, Subramaniam VN, Hebbard LW (2017) The functional roles of T-cadherin in mammalian biology. AIMS Mol Sci 4(1):62–81. CrossRefGoogle Scholar
  35. 35.
    Takeuchi T, Ohtsuki Y (2001) Recent progress in T-cadherin (CDH13, H-cadherin) research. Histol Histopathol 16(4):1287–1293PubMedGoogle Scholar
  36. 36.
    Ivanov D, Philippova M, Antropova J, Gubaeva F, Iljinskaya O, Tararak E, Bochkov V, Erne P, Resink T, Tkachuk V (2001) Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem Cell Biol 115(3):231–242CrossRefGoogle Scholar
  37. 37.
    Kudrjashova E, Bashtrikov P, Bochkov V, Parfyonova Y, Tkachuk V, Antropova J, Iljinskaya O, Tararak E, Erne P, Ivanov D, Philippova M, Resink TJ (2002) Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochem Cell Biol 118(4):281–290. CrossRefPubMedGoogle Scholar
  38. 38.
    Wyder L, Vitaliti A, Schneider H, Hebbard LW, Moritz DR, Wittmer M, Ajmo M, Klemenz R (2000) Increased expression of H/T-cadherin in tumor-penetrating blood vessels. Cancer Res 60(17):4682–4688PubMedGoogle Scholar
  39. 39.
    Resink TJ, Philippova M, Joshi MB, Kyriakakis E, Erne P (2009) Cadherins and cardiovascular disease. Swiss Med Wkly 139(9–10):122–134PubMedGoogle Scholar
  40. 40.
    Takeuchi T, Adachi Y, Ohtsuki Y, Furihata M (2007) Adiponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med Mol Morphol 40(3):115–120. CrossRefPubMedGoogle Scholar
  41. 41.
    Chotchaeva FRBAV, Samokhodskaya LM, Tkachuk VA, Sadovnichiy VA (2016) Association between T-cadherin gene (CDH13) variants and severity of coronary heart disease manifestation. Int J Clin Exp Med 9(2):4059–4064Google Scholar
  42. 42.
    Lee JH, Shin DJ, Park S, Kang SM, Jang Y, Lee SH (2013) Association between CDH13 variants and cardiometabolic and vascular phenotypes in a Korean population. Yonsei Med J 54(6):1305–1312. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vargas-Alarcon G, Martinez-Rodriguez N, Velazquez-Cruz R, Perez-Mendez O, Posadas-Sanchez R, Posadas-Romero C, Pena-Duque MA, Martinez-Rios MA, Ramirez-Fuentes S, Fragoso JM (2017) The T%3eA (rs11646213) gene polymorphism of cadherin-13 (CDH13) gene is associated with decreased risk of developing hypertension in Mexican population. Immunobiology 222(10):973–978. CrossRefPubMedGoogle Scholar
  44. 44.
    Reddy LL, Shah SAV, Ponde CK, Rajani RM, Ashavaid TF (2019) Circulating miRNA-33: a potential biomarker in patients with coronary artery disease. Biomarkers 24(1):36–42. CrossRefPubMedGoogle Scholar
  45. 45.
    Faccini J, Ruidavets JB, Cordelier P, Martins F, Maoret JJ, Bongard V, Ferrieres J, Roncalli J, Elbaz M, Vindis C (2017) Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci Rep 7:42916. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhou J, Shao G, Chen X, Yang X, Huang X, Peng P, Ba Y, Zhang L, Jehangir T, Bu S, Liu N, Lian J (2015) miRNA 206 and miRNA 574–5p are highly expression in coronary artery disease. Biosci Rep 36(1):e00295. CrossRefPubMedGoogle Scholar
  47. 47.
    O'Sullivan JF, Neylon A, McGorrian C, Blake GJ (2014) MicroRNA expression in coronary artery disease. Microrna 2(3):205–211CrossRefGoogle Scholar
  48. 48.
    Melak T, Baynes HW (2019) Circulating microRNAs as possible biomarkers for coronary artery disease: a narrative review. EJIFCC 30(2):179–194PubMedPubMedCentralGoogle Scholar
  49. 49.
    Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251(3):499–505 CrossRefPubMedGoogle Scholar
  50. 50.
    Ries J, Vairaktaris E, Kintopp R, Baran C, Neukam FW, Nkenke E (2014) Alterations in miRNA expression patterns in whole blood of OSCC patients. Vivo 28(5):851–861Google Scholar
  51. 51.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Neslihan Coban
    • 1
    Email author
  • Dilek Pirim
    • 2
  • Aycan Fahri Erkan
    • 3
  • Berkcan Dogan
    • 4
    • 5
  • Berkay Ekici
    • 3
  1. 1.Department of Genetics, Aziz Sancar Institute for Experimental MedicineIstanbul UniversityIstanbulTurkey
  2. 2.Faculty of Arts & Science, Department of Molecular Biology and GeneticsBursa Uludag UniversityBursaTurkey
  3. 3.Faculty of Medicine, Department of CardiologyUfuk UniversityAnkaraTurkey
  4. 4.Institute of Graduate Studies in Sciences, Department of Molecular Biology and GeneticsIstanbul UniversityIstanbulTurkey
  5. 5.Department of Medical GeneticsBursa Uludag UniversityBursaTurkey

Personalised recommendations