Molecular Biology Reports

, Volume 47, Issue 2, pp 1321–1329 | Cite as

Association between the transporters ABCA1/G1 and the expression of miR-33a/144 and the carotid intima media thickness in patients with arterial hypertension

  • Claudia Huesca-Gómez
  • Yazmín Estela Torres-Paz
  • Rocío Martínez-Alvarado
  • Giovanny Fuentevilla-Álvarez
  • Leonardo Del Valle-Mondragón
  • Margarita Torres-Tamayo
  • Ma. Elena Soto
  • Ricardo GamboaEmail author
Original Article


ATP-binding cassette membrane transporters (ABC), functions as an outflow facilitator of phospholipids and cellular cholesterol, playing an important role in the development of atherosclerosis and arterial hypertension. ABC’s transporters could post-transcriptionally regulated by miRs. Evaluate the association in the transporters ABCA1 and ABCG1 with the expression of miR-33a and miR-144 and the carotid intima media thickness (cIMT) in patients with essential arterial hypertension. The miR-33a-5p, miR-144-3p and mRNA ABCA1 and ABCG1 expression in monocytes from Mexican hypertensive patients were examined by RT-PCR. The miR-33a and miR-144 expression in monocytes and mRNA ABCA1 and ABCG1 from Mexican hypertensive patients were examined by RT-PCR. This study involved 84 subjects (42 normotensive subjects and 42 patients with essential hypertension). Our study revealed that miR-33a expression (p = 0.001) and miR-144 (p = 0.985) were up-regulated, meanwhile, ABCA1 and ABCG1 transporters were down-regulated (p = 0.007 and p = 0.550 respectively) in hypertensive patients compared with the control group. The trend remains for miR33a/ABCA1 in presence of cIMT. Moreover, an inverse correlation was found with the expression levels of ABCA1 and ABCG1 as well as in HDL-C with miR-33a and miR-144. Our results showed an increase in the expression of miR-33a and miR-144 and an inverse correlation in their target ABCA1 and ABCG1; it may be associated with essential arterial hypertension in patients with cIMT and as consequence for atheromatous plaque.


miR-33a miR-144 ABC transporters Arterial hypertension Carotid intima-media thickness 



We thank the participants of this study.


Funding for this study was provided by Consejo Nacional de Ciencia y Tecnologia (CONACYT), Project Number 273022. Compliance with ethical standards

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (Instituto Nacional de Cardiología, México) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.


  1. 1.
    Di Pietro N, Formoso G, Pandolfi A (2016) Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol 84:1–7CrossRefGoogle Scholar
  2. 2.
    Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, Guiducci C, Perola M, Jula A, Sinisalo J, Lokki ML, Nieminen MS, Melander O, Salomaa V, Peltonen L, Kathiresan S (2010) A multilocus genetic risk score for coronary heart disease: case–control and prospective cohort analyses. Lancet 376:1393–1400CrossRefGoogle Scholar
  3. 3.
    Gonias SL, Campana WM (2014) LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184:18–27CrossRefGoogle Scholar
  4. 4.
    Novák J, Olejníčková V, Tkáčová N, Santulli G (2015) Mechanistic role of microRNAs in coupling lipid metabolism and atherosclerosis. Adv Exp Med Biol 887:79–100CrossRefGoogle Scholar
  5. 5.
    Oram JF, Heinecke JW (2006) ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 85:1343–1372CrossRefGoogle Scholar
  6. 6.
    Oram JF, Vaughan AM, Stocker R (2001) ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. J Biol Chem 276(43):39898–39902CrossRefGoogle Scholar
  7. 7.
    van Eck M, Bos IS, Kaminski WE, Orsó E, Rothe G, Twisk J, Böttcher A, Van Amersfoort ES, Christiansen-Weber TA, Fung-Leung WP, Van Berkel TJ, Schmitz G (2002) Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci USA 99:6298–6303CrossRefGoogle Scholar
  8. 8.
    Haghpassand M, Bourassa PA, Francone OL, Aiello RJ (2001) Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J Clin Invest 108:1315–1320CrossRefGoogle Scholar
  9. 9.
    Zwarts KY, Clee SM, Zwinderman AH, Engert JC, Singaraja R, Loubser O, James E, Roomp K, Hudson TJ, Jukema JW, Kastelein JJ, Hayden MR (2002) ABCA1 regulatory variants influence coronary artery disease independent of effects on plasma lipid levels. Clin Genet 61:115–125CrossRefGoogle Scholar
  10. 10.
    Ono K (2006) Functions of microRNA-33a/b and microRNA therapeutics. J Cardiol 67:28–33CrossRefGoogle Scholar
  11. 11.
    Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga Y, Hasegawa K, Yokode M, Kimura T, Kita T (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 107:17321e6CrossRefGoogle Scholar
  12. 12.
    Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Näär AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569CrossRefGoogle Scholar
  13. 13.
    Distel E, Barret TJ, Chung K, Gisgis NM, Parathath GS, Essau CC, Murphy AJ, Moore KJ, Fisher ED (2013) MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high density lipoprotein after activation of nuclear receptor farnesoid X receptor. Circ Res 112:1602–1612CrossRefGoogle Scholar
  14. 14.
    De Aguiar Vallim T, Tarling E, Kim T, Civelek M, Baldán Á, Esau C, Edwards PA et al (2013) MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR. Circ Res 112:1602–1612CrossRefGoogle Scholar
  15. 15.
    Torres-Paz YE, Huesca-Gómez C, Sánchez-Muñoz F, Martínez-Alvarado R, Soto MaE, Torres-Tamayo M, Fuentevilla-Alvarez G, Gamboa R (2018) Association between the expression of miR-33a and carotid intima-media thickness from hypertensive patients. J Human Hypertens 10:681–690CrossRefGoogle Scholar
  16. 16.
    Friedewald WT, Levi RI, Fredrickson DS (1972) Estimation of concentration of low density lipoproteins cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMedGoogle Scholar
  17. 17.
    De Long DA, De Long ER, Weed PD (1986) The comparation of methods for the estimation of plasma low and very low density lipoproteins cholesterol. J Am Med Assoc 286:2372–2377Google Scholar
  18. 18.
    Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, Najjar SS, Rembold CM, Post WS (2008) American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task. J Am Soc Echocardiogr 21(2):93–111CrossRefGoogle Scholar
  19. 19.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCq method. Methods 25:402–408CrossRefGoogle Scholar
  20. 20.
    Dong J, Liang YZ, Zhang J, Wu LJ, Wang S, Hua Q, Yan YX (2017) Potential role of lipometabolism-related microRNAs in peripheral blood mononuclear cells as biomarkers for coronary artery disease. J Atheroscler Thromb 24:430–441CrossRefGoogle Scholar
  21. 21.
    Ramirez CM, Rotllan N, Vlassov AV, Dávalos A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno A, Wanschel A, Zavadil J, Castrillo A, Kim J, Suárez Y, Fernández-Hernando C (2013) Control of cholesterol metabolism and plasma HDL levels by miRNA-144. Circ Res 112:1592–1601CrossRefGoogle Scholar
  22. 22.
    Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, Khatsenko OG, Lees CJ, Fernandez-Hernando C, Fisher EA, Temel RE, Moore KJ (2011) Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478:404e7CrossRefGoogle Scholar
  23. 23.
    Marquart TJ, Allen RM, Ory DS, Baldan A (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 107:12228e32CrossRefGoogle Scholar
  24. 24.
    Raitoharju E, Lyytikainen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kähönen M, Karhunen PJ, Laaksonen R, Lehtimäki T (2011) miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219:211e7CrossRefGoogle Scholar
  25. 25.
    Vega-Badillo J, Gutierrez-Vidal R, Hernandez-Perez HA, Villamil-Ramírez H, León-Mimila P, Sánchez-Muñoz F, Morán-Ramos S, Larrieta-Carrasco E, Fernández-Silva I, Méndez-Sánchez N, Tovar AR, Campos-Pérez F, Villarreal-Molina T, Hernández-Pando R, Aguilar-Salinas CA, Canizales-Quinteros S (2016) Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int 36:1383–1391CrossRefGoogle Scholar
  26. 26.
    Aiello RJ, Brees D, Bourassa PA, Royer L, Lindsey S, Coskran T, Haghpassand M, Francone OL (2002) Increased atherosclerosis in hyperlipidemic mice with inactivation of abca1 in macrophages. Arterioscler Thromb Vas Biol 22:630–637CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Claudia Huesca-Gómez
    • 1
  • Yazmín Estela Torres-Paz
    • 1
  • Rocío Martínez-Alvarado
    • 2
  • Giovanny Fuentevilla-Álvarez
    • 1
  • Leonardo Del Valle-Mondragón
    • 3
  • Margarita Torres-Tamayo
    • 2
  • Ma. Elena Soto
    • 4
  • Ricardo Gamboa
    • 1
    Email author
  1. 1.Department of PhysiologyInstituto Nacional de Cardiología “Ignacio Chávez”Mexico CityMexico
  2. 2.Department of EndocrinologyInstituto Nacional de Cardiología “Ignacio Chávez”Mexico CityMexico
  3. 3.Department of PharmacologyInstituto Nacional de Cardiología “Ignacio Chávez”Mexico CityMexico
  4. 4.Department of ImmunologyInstituto Nacional de Cardiología “Ignacio Chávez”Mexico CityMexico

Personalised recommendations