Molecular Biology Reports

, Volume 47, Issue 2, pp 1399–1411 | Cite as

Endometrial cancer and its cell lines

  • Kristijan SkokEmail author
  • Uroš Maver
  • Lidija Gradišnik
  • Nejc Kozar
  • Iztok Takač
  • Darja ArkoEmail author


Endometrial cancer is one of the most common gynaecological malignancies worldwide. One type of research in this field is the growing of cell lines (CLs) and cultures, which can be used to explore the biological mechanisms of cancer. The purpose of this review is to offer an overview of the current literature and highlight the importance of correct CL studies. We carried out a literature analysis of more than 60 articles from the Pubmed, Medline databases that were almost exclusively published in indexed journals in the last 10 years as well as the primary originating scientific studies of specific CLs. We then summarized the newest findings and recommendations. Cell lines are becoming widely used as in vitro tumour models. Recent work has shown inconsistencies in nomenclature and culturing of CLs. Their genomic evolution leads to a high degree of variation across CL strains therefore it is of the utmost importance to recognize the variability within laboratory cancer models. Laboratories must adapt, incorporate additional characterisation techniques and view this situation as an opportunity to improve the reproducibility of pre-clinical cancer research. The authors offer a comprehensive literature review about endometrial cancer CLs, a review of the current literature and advice on culturing CLs.


Endometrial cancer Cell line Tissue culture Cancer cell line In vitro models Cell isolation 


Author contributions

KS, UM, LG, NK, DA and IT designed the study. KS, UM, LG, NK, DA and IT wrote the manuscript and prepared the figures. All authors reviewed the manuscript.


The authors would like to acknowledge the financial support for this project received from the Slovenian Research Agency (Grant Numbers: P3-0036 and I0-0029), as well as the financial support from University Medical Centre Maribor, Slovenia (IRP-2018/01-19).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interests for this article.

Ethical approval



  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29. CrossRefPubMedGoogle Scholar
  2. 2.
    Tran A-Q, Gehrig P (2017) Recent advances in endometrial cancer. F1000Research 6:81. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zadnik V, Primic Zakelj M, Lokar K et al (2017) Cancer burden in Slovenia with the time trends analysis. Radiol Oncol 51:47–55. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Society C (2016) Canadian cancer. Statistics (Ber) 2016:1–142Google Scholar
  6. 6.
    Lax SF (2016) Neues in der WHO-Klassifikation 2014 der Tumoren des Corpus uteri. Pathologe 37:500–511. CrossRefPubMedGoogle Scholar
  7. 7.
    Talhouk A, McAlpine JN (2016) New classification of endometrial cancers: the development and potential applications of genomic-based classification in research and clinical care. Gynecol Oncol Res Pract 3:14. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    WHO (2014) Tumours of the uterine corpus. In: Kurman RJ, Carcangiu ML, Herrington CS, Young RH (eds) WHO classification of tumours of the female reproductive organs, 4th ed, pp 126–165Google Scholar
  9. 9.
    Lax SF (2019) Vorläuferläsionen der Endometriumkarzinome. Pathologe 40:13–20. CrossRefPubMedGoogle Scholar
  10. 10.
    Bell DW, Ellenson LH (2019) Molecular genetics of endometrial carcinoma. Annu Rev Pathol Mech Dis 14:339–367. CrossRefGoogle Scholar
  11. 11.
    Morice P, Leary A, Creutzberg C et al (2016) Endometrial cancer. Lancet 387:1094–1108. CrossRefPubMedGoogle Scholar
  12. 12.
    Lax SF (2017) Pathology of endometrial carcinoma. In: Advances in experimental medicine and biology, pp 75–96Google Scholar
  13. 13.
    Ben-David U, Siranosian B, Ha G et al (2018) Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560:325–330. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Van Nyen T, Moiola CP, Colas E et al (2018) Modeling endometrial cancer: past, present, and future. Int J Mol Sci 19:2348. CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zhou X, Wang Z, Zhao Y et al (2007) Characterization of sixteen endometrial cancer cell lines. Cancer Res 67:3870Google Scholar
  16. 16.
    Kozak J, Wdowiak P, Maciejewski R, Torres A (2018) A guide for endometrial cancer cell lines functional assays using the measurements of electronic impedance. Cytotechnology 70:339–350. CrossRefPubMedGoogle Scholar
  17. 17.
    Lin CY, Erkek S, Tong Y et al (2016) Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530:57–62. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gasteiger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ghandi M, Huang FW, Jané-Valbuena J et al (2019) Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569:503–508. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bairoch A (2018) The Cellosaurus, a cell-line knowledge resource. J Biomol Tech 29:25–38. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dutil J, Chen Z, Monteiro AN et al (2019) An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines. Cancer Res 79:1263. CrossRefPubMedGoogle Scholar
  22. 22.
    Korch C, Spillman MA, Jackson TA et al (2012) DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecol Oncol 127:241–248. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Qu W, Zhao Y, Wang X et al (2019) Culture characters, genetic background, estrogen/progesterone receptor expression, and tumorigenic activities of frequently used sixteen endometrial cancer cell lines. Clin Chim Acta 489:225–232CrossRefGoogle Scholar
  24. 24.
    Hevir-Kene N, Rižner TL (2015) The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism. Chem Biol Interact 234:309–319CrossRefGoogle Scholar
  25. 25.
    Nishida M, Kasahara K, Kaneko M et al (1985) Establishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors. Nihon Sanka Fujinka Gakkai Zasshi 37:1103–1111PubMedGoogle Scholar
  26. 26.
    Nishida M (2002) The Ishikawa cells from birth to the present. Hum Cell 15:104–117CrossRefGoogle Scholar
  27. 27.
    Kuramoto H (1972) Studies of the growth and cytogenetic properties of human endometrial adenocarcinoma in culture and its development into an established line. Acta Obstet Gynaecol Jpn 19:47–58PubMedGoogle Scholar
  28. 28.
    Fogh J (1986) Human tumor lines for cancer research. Cancer Investig 4:157–184. CrossRefGoogle Scholar
  29. 29.
    Wang Y, Yang D, Cogdell D et al (2010) Genomic characterization of gene copy-number aberrations in endometrial carcinoma cell lines derived from endometrioid-type endometrial adenocarcinoma. Technol Cancer Res Treat 9:179–189. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dawe CJ, Banfield WG, Morgan WD et al (1964) Growth in continuous culture, and in hamsters, of cells from a neoplasm associated with acanthosis nigricans. JNCI J Natl Cancer Inst 33:441–456. CrossRefPubMedGoogle Scholar
  31. 31.
    Satyaswaroop PG, Sivarajah A, Zaino RJ, Mortel R (1988) Hormonal control of growth of human endometrial carcinoma in nude mouse model. Prog cancer Res Ther 35:430–435Google Scholar
  32. 32.
    Ricci MS, Toscano DG, Toscano WA (1999) ECC-1 human endometrial cells as a model system to study dioxin disruption of steroid hormone function. In Vitro Cell Dev Biol Animb 35:183–189. CrossRefGoogle Scholar
  33. 33.
    Richardson GS, Dickersin GR, Atkins L et al (1984) KLE: a cell line with defective estrogen receptor derived from undifferentiated endometrial cancer. Gynecol Oncol 17:213–230. CrossRefPubMedGoogle Scholar
  34. 34.
    Rantanen V, Grénman S, Kulmala J et al (1994) Sublethal damage repair after fractionated irradiation in endometrial cancer cell lines tested with the 96-well plate clonogenic assay. J Cancer Res Clin Oncol 120:712–716. CrossRefPubMedGoogle Scholar
  35. 35.
    Rantanen V, Grénman S, Kulmala J et al (1992) Radiation sensitivity of endometrial carcinoma in vitro. Gynecol Oncol 44:217–222. CrossRefPubMedGoogle Scholar
  36. 36.
    Tate JG, Bamford S, Jubb HC et al (2018) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D941–D947. CrossRefPubMedCentralGoogle Scholar
  37. 37.
    International Cell Line Authentication Committee (2015) Naming a cell line - ver. 1.6. Accessed 14 Apr 2018
  38. 38.
    Skok K, Gradišnik L, Čelešnik H et al (2019) Isolation and characterization of the first Slovenian human triple negative breast cancer cell line. Breast J. CrossRefPubMedGoogle Scholar
  39. 39.
    Gradisnik L, Trapecar M, Rupnik MS, Velnar T (2015) HUIEC, Human intestinal epithelial cell line with differentiated properties: process of isolation and characterisation. Wien Klin Wochenschr 127:204–209. CrossRefGoogle Scholar
  40. 40.
    Naranda J, Gradišnik L, Gorenjak M et al (2017) Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA). PeerJ 5:e3079. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Geraghty RJ, Capes-Davis A, Davis JM et al (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111:1021–1046. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Howe B, Umrigar A, Tsien F (2014) Chromosome preparation from cultured cells. J Vis Exp. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lee C-Y, Lee Y-F, Chuang EY et al (2018) Cell Express: a comprehensive microarray-based cancer cell line and clinical sample gene expression analysis online system. Database. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Burry RW (2011) Controls for immunocytochemistry: an update. J Histochem Cytochem 59:6–12. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Poojan S, Kim H-S, Yoon J-W et al (2018) Determination of protein expression level in cultured cells by immunocytochemistry on paraffin-embedded cell blocks. J Vis Exp. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ferreira-Silva B, Fonseca-Cardoso M, Porto MJ et al (2018) A comparison among three multiplex Y-STR profiling kits for sexual assault cases. J Forensic Sci 63:1836–1840. CrossRefPubMedGoogle Scholar
  47. 47.
    Crawford MH, Beaty KG (2013) DNA fingerprinting in anthropological genetics: past, present, future. Investig Genet 4:23. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hynds RE, Vladimirou E, Janes SM (2018) The secret lives of cancer cell lines. Dis Model Mech 11:dmm037366. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lai ZW, Bolm L, Fuellgraf H et al (2016) Characterization of various cell lines from different ampullary cancer subtypes and cancer associated fibroblast-mediated responses. BMC Cancer 16:195. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fusenig NE, Capes-Davis A, Bianchini F et al (2017) The need for a worldwide consensus for cell line authentication: experience implementing a mandatory requirement at the International Journal of Cancer. PLoS Biol 15:e2001438CrossRefGoogle Scholar
  51. 51.
    Lorsch JR, Collins FS, Lippincott-Schwartz J (2014) Fixing problems with cell lines. Science 346:1452. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shah RN, Grzybowski AT, Cornett EM et al (2018) Examining the roles of H3K4 methylation states with systematically characterized antibodies. Mol Cell 72:162. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Loken E, Gelman A (2017) Measurement error and the replication crisis. Science 355:584. CrossRefPubMedGoogle Scholar
  54. 54.
    Weissgerber TL, Savic M, Winham SJ et al (2017) Data visualization, bar naked: a free tool for creating interactive graphics. J Biol Chem 292:20592–20598. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Skok K, Takač I, Kavalar R et al (2019) Simple protocol for effective preparation of breast cancer cell cultures for possible 3D tumor modeling. EPNOE Newletter 7–8Google Scholar
  56. 56.
    Skok K, Maver U, Gradišnik L et al (2019) Human breast cancer cell lines. Slov Med J. CrossRefGoogle Scholar
  57. 57.
    Kuramoto H, Nishida M, Morisawa T et al (1991) Establishment and characterization of human endometrial cancer cell lines. Ann N Y Acad Sci 622:402–421. CrossRefPubMedGoogle Scholar
  58. 58.
    Yu M, Selvaraj SK, Liang-Chu MMY et al (2015) A resource for cell line authentication, annotation and quality control. Nature 520:307–311. CrossRefPubMedGoogle Scholar
  59. 59.
    Mosoyan G, Nagi C, Marukian S et al (2013) Multiple breast cancer cell-lines derived from a single tumor differ in their molecular characteristics and tumorigenic potential. PLoS ONE 8:e55145. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lacroix M, Haibe-Kains B, Hennuy B et al (2004) Gene regulation by phorbol 12-myristate 13-acetate in MCF-7 and MDA-MB-231, two breast cancer cell lines exhibiting highly different phenotypes. Oncol Rep 12:701–707PubMedGoogle Scholar
  61. 61.
    Hiscox S, Baruha B, Smith C et al (2012) Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer 12:458. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kasai F, Hirayama N, Ozawa M et al (2016) Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: proposal for an in vitro clonal evolution model of tumor cells. Genomics 107:259–266. CrossRefPubMedGoogle Scholar
  63. 63.
    Li W, Wang S, Qiu C et al (2019) Comprehensive bioinformatics analysis of acquired progesterone resistance in endometrial cancer cell line. J Transl Med 17:58. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pickl M, Ries CH (2009) Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28:461–468. CrossRefPubMedGoogle Scholar
  65. 65.
    Gillet J-P, Varma S, Gottesman MM (2013) The clinical relevance of cancer cell lines. J Natl Cancer Inst 105:452–458. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74:2377–2384. CrossRefPubMedGoogle Scholar
  67. 67.
    Galuschka C, Proynova R, Roth B et al (2017) Models in translational oncology: a public resource database for preclinical cancer research. Cancer Res 77:2557–2563. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Institute of Biomedical SciencesUniversity of MariborMariborSlovenia
  2. 2.Department of PathologyGeneral Hospital Graz IIGrazAustria
  3. 3.Department of Pharmacology, Faculty of MedicineUniversity of MariborMariborSlovenia
  4. 4.Faculty of MedicineUniversity of MariborMariborSlovenia
  5. 5.Division of Gynaecology and PerinatologyUniversity Medical Center MariborMariborSlovenia

Personalised recommendations