Advertisement

Molecular Biology Reports

, Volume 47, Issue 2, pp 1241–1256 | Cite as

Genome-wide association mapping for adult resistance to powdery mildew in common wheat

  • Yichen Kang
  • Karen Barry
  • Fangbing Cao
  • Meixue ZhouEmail author
Original Article
  • 138 Downloads

Abstract

Blumeria graminis f. sp. tritici, the causal agent of wheat powdery mildew disease, can occur at all stages of the crop and constantly threatens wheat production. To identify candidate resistance genes for powdery mildew, we performed GWAS (genome-wide association studies) on a total set of 329 wheat varieties obtained from different origins. These wheat materials were genotyped using wheat 90K SNP array and evaluated for their resistance in either field or glasshouse condition from 2016 to 2018. Using a mixed linear model, 33 SNP markers of which 14 QTL (quantitative trait loci) were later defined were observed to associate with powdery mildew resistance. Among these, QTL on chromosome 3A, 3B, 6D and 7D were concluded as potentially new QTL. Exploration of candidate genes for new QTL suggested roles of these genes involved in encoding disease resistance and defence-related proteins, and regulating early immune response to the pathogen. Overall, the results reveal that GWAS can be an effective means of identifying marker-trait associations, though further functional validation and fine-mapping of gene candidates are required before creating opportunities for developing new resistant genotypes.

Keywords

Wheat Powdery mildew Marker-trait association Single nucleotide polymorphism Quantitative trait loci 

Notes

Acknowledgements

We would like to thank Dr. Ross Corkrey for providing valuable suggestions on statistical analysis.

Author contributions

YK conducted the phenotyping for the 2017 and 2108 studies performed the GWAS analysis and drafted the manuscript. FC conducted the phenotyping for the 2016 study. KB contributed to editing the manuscript. MZ conceived the study, generated the genotyping data and critically reviewed the mauscript.

Funding

This work was supported by the Grains Research and Development Corporation of Australia, Grant UT00030 and the Fundamental Research Funds for the Central Universities (2019QNA6022).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Supplementary material

11033_2019_5225_MOESM1_ESM.docx (811 kb)
Supplementary material 1 (DOCX 811 kb)
11033_2019_5225_MOESM2_ESM.xlsx (46 kb)
Supplementary material 2 (XLSX 45 kb)

References

  1. 1.
    Singh RP et al (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309.  https://doi.org/10.1016/s0065-2113(08)00205-8 CrossRefGoogle Scholar
  2. 2.
    Bennett FGA (1984) Resistance to powdery mildew in wheat—a review of its use in agriculture and breeding programs. Plant Pathol 33:279–300.  https://doi.org/10.1111/j.1365-3059.1984.tb01324.x CrossRefGoogle Scholar
  3. 3.
    Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428.  https://doi.org/10.1371/journal.pone.0066428 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pilet-Nayel ML et al (2017) Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci 8:1838.  https://doi.org/10.3389/fpls.2017.01838 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296.  https://doi.org/10.1146/annurev.py.09.090171.001423 CrossRefGoogle Scholar
  6. 6.
    Cowger C, Mehra L, Arellano C, Meyers E, Murphy JP (2018) Virulence differences in Blumeria graminis f. sp. tritici from the central and eastern United States. Phytopathology 108:402–411.  https://doi.org/10.1094/phyto-06-17-0211-r CrossRefPubMedGoogle Scholar
  7. 7.
    Golzar H, Shankar M, D’Antuono M (2016) Responses of commercial wheat varieties and differential lines to western Australian powdery mildew (Blumeria graminis f. sp. tritici) populations. Australas Plant Pathol 45:347–355.  https://doi.org/10.1007/s13313-016-0420-9 CrossRefGoogle Scholar
  8. 8.
    Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166.  https://doi.org/10.1007/s00122-008-0743-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Niks RE, Qi XQ, Marcel TC (2015) Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu Rev Phytopathol 53:445–470.  https://doi.org/10.1146/annurev-phyto-080614-115928 CrossRefPubMedGoogle Scholar
  10. 10.
    Asad MA, Bai B, Lan CX, Yan J, Xia XC, Zhang Y, He ZH (2012) Molecular mapping of quantitative trait loci for adult-plant resistance to powdery mildew in Italian wheat cultivar Libellula. Crop Pasture Sci 63:539–546.  https://doi.org/10.1071/cp12174 CrossRefGoogle Scholar
  11. 11.
    Mingeot D et al (2002) Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breed 121:133–140.  https://doi.org/10.1046/j.1439-0523.2002.00679.x CrossRefGoogle Scholar
  12. 12.
    Liu N, Bai GH, Lin M, Xu XY, Zheng WM (2017) Genome-wide association analysis of powdery mildew resistance in US winter wheat. Sci Rep 7:11743.  https://doi.org/10.1038/s41598-017-11230-z CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang XH, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65(65):531–551.  https://doi.org/10.1146/annurev-arplant-050213-035715 CrossRefPubMedGoogle Scholar
  14. 14.
    Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839.  https://doi.org/10.1111/j.1467-7652.2012.00702.x CrossRefPubMedGoogle Scholar
  15. 15.
    Huang BE et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017.  https://doi.org/10.1007/s00122-015-2506-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111.  https://doi.org/10.1016/s1369-5266(02)00238-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Juliana P et al (2018) Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet 131:1405–1422.  https://doi.org/10.1007/s00122-018-3086-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20.  https://doi.org/10.3835/plantgenome2008.02.0089 CrossRefGoogle Scholar
  19. 19.
    Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19:21–33.  https://doi.org/10.1038/nrg.2017.82 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang SX et al (2017) Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE 12:e0188662.  https://doi.org/10.1371/journal.pone.0188662 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lewien MJ, Murray TD, Jernigan KL, Garland-Campbell KA, Carter AH (2018) Genome-wide association mapping for eyespot disease in US Pacific Northwest winter wheat. PLoS ONE 13:e0194698.  https://doi.org/10.1371/journal.pone.0194698 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2014). Catalogue of gene symbols for wheat: 2013–2014 (supplement). https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf. Accessed 6 Dec 2019
  23. 23.
    McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2016). Catalogue of gene symbols for wheat: 2015–2016 (Supplement). https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015.pdf. Accessed 6 Dec 2019
  24. 24.
    McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017). Catalogue of gene symbols for wheat: 2017 (Supplement). https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf. Accessed 6 Dec 2019
  25. 25.
    Li G et al (2019) Identification of powdery mildew resistance loci in wheat by integrating genome-wide association study (GWAS) and linkage mapping. Crop J 7:294–306.  https://doi.org/10.1016/j.cj.2019.01.005 CrossRefGoogle Scholar
  26. 26.
    Wang SC et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796.  https://doi.org/10.1111/pbi.12183 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. In: Edwards D (ed) Plant bioinformatics, vol 1374. Humana Press. New York, NY, pp 115–140CrossRefGoogle Scholar
  28. 28.
    Granato ISC, Galli G, Couto EGD, Souza MBE, Mendonca LF, Fritsche R (2018) snpReady: a tool to assist breeders in genomic analysis. Mol Breed 38:102.  https://doi.org/10.1007/s11032-018-0844-8 CrossRefGoogle Scholar
  29. 29.
    Wimmer V, Albrecht T, Auinger HJ, Schon CC (2012) Synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087.  https://doi.org/10.1093/bioinformatics/bts335 CrossRefPubMedGoogle Scholar
  30. 30.
    Sijaona MER, Clewer A, Maddison A, Mansfield JW (2001) Comparative analysis of powdery mildew development on leaves, seedlings and flower panicles of different genotypes of cashew. Plant Pathol 50:234–243.  https://doi.org/10.1046/j.1365-3059.2001.00544.x CrossRefGoogle Scholar
  31. 31.
    R Core Team (2014) R: a language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/. Accessed 6 Dec 2019
  32. 32.
    Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  33. 33.
    Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 108:285–291.  https://doi.org/10.1038/hdy.2011.73 CrossRefPubMedGoogle Scholar
  34. 34.
    Ginestet C (2011) ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A (Stat Soc) 174:245.  https://doi.org/10.1111/j.1467-985X.2010.00676_9.x CrossRefGoogle Scholar
  35. 35.
    Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78.  https://doi.org/10.1016/0040-5809(88)90004-4 CrossRefPubMedGoogle Scholar
  36. 36.
    Remington DL et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484.  https://doi.org/10.1073/pnas.201394398 CrossRefPubMedGoogle Scholar
  37. 37.
    Hoffman GE (2013) Correcting for population structure and kinship using the linear mixed model: theory and extensions. PLoS ONE 8:e75707.  https://doi.org/10.1371/journal.pone.0075707 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kang HM et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348.  https://doi.org/10.1038/ng.548 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723.  https://doi.org/10.1534/genetics.107.080101 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng XW, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328.  https://doi.org/10.1093/bioinformatics/bts606 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tang Y et al (2016) GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome 9:1–9.  https://doi.org/10.3835/plantgenome2015.11.0120 CrossRefGoogle Scholar
  42. 42.
    Aulchenko YS, Ripke S, Isaacs A, Van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296.  https://doi.org/10.1093/bioinformatics/btm108 CrossRefPubMedGoogle Scholar
  43. 43.
    Tsepilov YA, Ried JS, Strauch K, Grallert H, van Duijn CM, Axenovich TI, Aulchenko YS (2013) Development and application of genomic control methods for genome-wide association studies using non-additive models. PLoS ONE 8:e81431.  https://doi.org/10.1371/journal.pone.0081431 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sharma SK, MacKenzie K, McLean K, Dale F, Daniels S, Bryan GJ (2018) Linkage disequilibrium and evaluation of genome-wide association mapping models in tetraploid potato. G3-Genes Genom Genet 8:3185–3202.  https://doi.org/10.1534/g3.118.200377 CrossRefGoogle Scholar
  45. 45.
    Maccaferri M et al (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3-Genes Genom Genet 5:449–465.  https://doi.org/10.1534/g3.114.014563 CrossRefGoogle Scholar
  46. 46.
    Appels R et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:1–13.  https://doi.org/10.1126/science.aar7191 CrossRefGoogle Scholar
  47. 47.
    Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) JBrowse: a next-generation genome browser. Genome Res 19:1630–1638.  https://doi.org/10.1101/gr.094607.109 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kinsella RJ et al. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database-Oxford, bar030.  https://doi.org/10.1093/database/bar030 CrossRefGoogle Scholar
  49. 49.
    Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  50. 50.
    Liu JD et al (2017) Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol 17:220.  https://doi.org/10.1186/s12870-017-1167-3 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lopes MS, Dreisigacker S, Pena RJ, Sukumaran S, Reynolds MP (2015) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet 128:453–464.  https://doi.org/10.1007/s00122-014-2444-2 CrossRefPubMedGoogle Scholar
  52. 52.
    Chao SM, Zhang WJ, Akhunov E, Sherman J, Ma YQ, Luo MC, Dubcovsky J (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed. 23:23–33.  https://doi.org/10.1007/s11032-008-9210-6 CrossRefGoogle Scholar
  53. 53.
    Alomari DZ et al (2019) Whole-genome association mapping and genomic prediction for iron concentration in wheat grains. Int J Mol Sci 20:76.  https://doi.org/10.3390/ijms20010076 CrossRefGoogle Scholar
  54. 54.
    Cao K et al (2016) Genome-wide association study of 12 agronomic traits in peach. Nat Commun 7:13246.  https://doi.org/10.1038/ncomms13246 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16.  https://doi.org/10.1186/1471-2229-12-16 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu SX, Griffey CA, Maroof MAS (2001) Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41:1268–1275.  https://doi.org/10.2135/cropsci2001.4141268x CrossRefGoogle Scholar
  57. 57.
    Tucker DM, Griffey CA, Liu S, Brown-Guedira G, Marshall DS, Maroof MAS (2007) Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 155:1–13.  https://doi.org/10.1007/s10681-006-9295-0 CrossRefGoogle Scholar
  58. 58.
    Jia AL et al (2018) Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theor Appl Genet 131:1063–1071.  https://doi.org/10.1007/s00122-018-3058-x CrossRefPubMedGoogle Scholar
  59. 59.
    Chen Y, Hunger RM, Carver BF, Zhang H, Yan L (2009) Genetic characterization of powdery mildew resistance in US hard winter wheat. Mol Breed 24:141–152.  https://doi.org/10.1007/s11032-009-9279-6 CrossRefGoogle Scholar
  60. 60.
    Mohler V, Hsam SLK, Zeller FJ, Wenzel G (2001) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 120:448–450.  https://doi.org/10.1046/j.1439-0523.2001.00622.x CrossRefGoogle Scholar
  61. 61.
    Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370.  https://doi.org/10.1023/a:1025738513638 CrossRefGoogle Scholar
  62. 62.
    Kou YJ, Wang SP (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185.  https://doi.org/10.1016/j.pbi.2009.12.010 CrossRefPubMedGoogle Scholar
  63. 63.
    Liang SS et al (2006) Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology 96:784–789.  https://doi.org/10.1094/phyto-96-0784 CrossRefPubMedGoogle Scholar
  64. 64.
    Bougot Y, Lemoine J, Pavoine MT, Guyomar’ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breed 125:550–556.  https://doi.org/10.1111/j.1439-0523.2006.01308.x CrossRefGoogle Scholar
  65. 65.
    Qin B et al (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218.  https://doi.org/10.1007/s00122-011-1577-9 CrossRefPubMedGoogle Scholar
  66. 66.
    Zhan H et al (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS ONE 9:e113455.  https://doi.org/10.1371/journal.pone.0113455 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lan CX, Ni XW, Yan J, Zhang Y, Xia XC, Chen XM, He ZH (2010) Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed. 25:615–622.  https://doi.org/10.1007/s11032-009-9358-8 CrossRefGoogle Scholar
  68. 68.
    He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu JX (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180.  https://doi.org/10.1007/s00122-009-0971-z CrossRefPubMedGoogle Scholar
  69. 69.
    Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98:903–912.  https://doi.org/10.1007/s001220051149 CrossRefGoogle Scholar
  70. 70.
    Chen Y, Zhang ZY, Li HJ, Liu ZY, Veisz O, Vida G (2011) Pm44, a new gene for powdery mildew resistance on the short arm of wheat chromosome 3A. (Draft manuscript)Google Scholar
  71. 71.
    Marone D et al (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 14:562.  https://doi.org/10.1186/1471-2164-14-562 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Xie WL et al (2012) Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed 29:399–412.  https://doi.org/10.1007/s11032-011-9557-y CrossRefGoogle Scholar
  73. 73.
    Hao YF et al (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476.  https://doi.org/10.1007/s00122-014-2445-1 CrossRefPubMedGoogle Scholar
  74. 74.
    DeWan AT, Parrado AR, Matise TC, Leal SM (2002) The map problem: a comparison of genetic and sequence-based physical maps. Am J Hum Genet 70:101–107.  https://doi.org/10.1086/324774 CrossRefPubMedGoogle Scholar
  75. 75.
    Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719.  https://doi.org/10.1104/pp.106.092015 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li HX et al (2014) Identification and characterization of a novel copper transporter gene family TaCT1 in common wheat. Plant Cell Environ 37:1561–1573.  https://doi.org/10.1111/pce.12263 CrossRefPubMedGoogle Scholar
  77. 77.
    Cubero B et al (2009) The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Mol Plant 2:535–552.  https://doi.org/10.1093/mp/ssp013 CrossRefPubMedGoogle Scholar
  78. 78.
    Remy E et al (2013) A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25:901–926.  https://doi.org/10.1105/tpc.113.110353 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Simmons CR, Fridlender M, Navarro PA, Yalpani N (2003) A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters. Plant Mol Biol 52:433–446.  https://doi.org/10.1023/a:1023982704901 CrossRefPubMedGoogle Scholar
  80. 80.
    Chen LH, Tsai HC, Yu PL, Chung KR (2017) A major facilitator superfamily transporter-mediated resistance to oxidative stress and fungicides requires Yap1, Skn7, and MAP kinases in the citrus fungal pathogen Alternaria alternata. PLoS ONE 12:e0169103.  https://doi.org/10.1371/journal.pone.0169103 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lin HC, Chen LH, Yu PL, Tsai HC, Chung KR (2018) A major facilitator superfamily transporter regulated by the stress-responsive transcription factor Yap1 is required for resistance to fungicides, xenobiotics and oxidants and full virulence in Alternaria alternata. Front Microbiol 9:2229.  https://doi.org/10.3389/fmicb.2018.02229 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Frenkel O, Cadle-Davidson L, Wilcox WF, Milgroom MG (2015) Mechanisms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erysiphe necator. Phytopathology 105:370–377.  https://doi.org/10.1094/phyto-07-14-0202-r CrossRefPubMedGoogle Scholar
  83. 83.
    Kretschmer M et al (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathol 5:e1000696.  https://doi.org/10.1371/journal.ppat.1000696 CrossRefGoogle Scholar
  84. 84.
    Roohparvar R, De Waard MA, Kema GHJ, Zwiers LH (2007) MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genet Biol 44:378–388.  https://doi.org/10.1016/j.fgb.2006.09.007 CrossRefPubMedGoogle Scholar
  85. 85.
    Xin M et al (2012) Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. Genom Proteom Bioinf 10:94–106.  https://doi.org/10.1016/j.gpb.2012.05.002 CrossRefGoogle Scholar
  86. 86.
    Balakireva AV et al (2018) Proteomics analysis reveals that caspase-like and metacaspase-like activities are dispensable for activation of proteases involved in early response to biotic stress in Triticum aestivum L. Int J Mol Sci 19:3991.  https://doi.org/10.3390/ijms19123991 CrossRefPubMedCentralGoogle Scholar
  87. 87.
    Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353:417–439.  https://doi.org/10.1042/0264-6021:3530417 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ahn CS, Han JA, Lee HS, Lee S, Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23:185–209.  https://doi.org/10.1105/tpc.110.074005 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Durian G, Rahikainen M, Alegre S, Brosche M, Kangasjarvi S (2016) Protein phosphatase 2A in the regulatory network underlying biotic stress resistance in plants. Front Plant Sci 7:812.  https://doi.org/10.3389/fpls.2016.00812 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Xu CY, Jing RL, Mao XG, Jia XY, Chang XP (2007) A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot 99:439–450.  https://doi.org/10.1093/aob/mcl285 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Yu RMK, Zhou Y, Xu ZF, Chye ML, Kong RYC (2003) Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Mol Biol 51:295–311.  https://doi.org/10.1023/a:1022006023273 CrossRefPubMedGoogle Scholar
  92. 92.
    Ballesteros I et al (2013) Specialized functions of the PP2A subfamily II catalytic subunits PP2A-C3 and PP2A-C4 in the distribution of auxin fluxes and development in Arabidopsis. Plant J 73:862–872.  https://doi.org/10.1111/tpj.12078 CrossRefPubMedGoogle Scholar
  93. 93.
    Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C (2007) Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci 12:169–176.  https://doi.org/10.1016/j.tplants.2007.03.003 CrossRefPubMedGoogle Scholar
  94. 94.
    Li XH, Scuderi A, Letsou A, Virshup DM (2002) B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol Cell Biol 22:3674–3684.  https://doi.org/10.1128/mcb.22.11.3674-3684.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Andersen EJ, Shaw SR, Nepal MP (2015) Genome-wide identification of disease resistance genes in Aegilops tauschii Coss. (Poaceae). In: 100th Annual Meeting of the South-Dakota-Academy-of-Science, Oacoma, SD, Apr 10–11 2015. Proceedings of the South Dakota Academy of Science. pp 281–295Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.TIA, University of TasmaniaLauncestonAustralia
  2. 2.TIA, University of TasmaniaHobartAustralia
  3. 3.Department of Agronomy, College of Agriculture and Biotechnology, Zijingang CampusZhejiang UniversityHangzhouChina

Personalised recommendations