Advertisement

Highly efficient CRISPR-targeting of the murine Hipp11 intergenic region supports inducible human transgene expression

Abstract

Safe harbor loci allow predicable integration of a transgene into the genome without perturbing endogenous gene activity and for decades have been exploited in the mouse to investigate gene function, generate humanised models and create tissue specific reporter and Cre recombinase expressing lines. Herein, we show that the murine Hipp11 intergenic region can facilitate highly efficient integration of a large transgene—the human CD1A promoter and coding region—by means of CRISPR-Cas9 mediated homology directed repair. The data shows that the single copy human CD1A transgene is faithfully expressed in an inducible manner in homozygous animals in both macrophage and dendritic cells. Our results validate the Hipp11 intergenic region as being a highly amenable target site for functional transgene integration in mouse.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET, Khalid F, Zhang W, Newburger D, Jaeger SA, Morris QD, Bulyk ML, Hughes TR (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133(7):1266–1276

  2. 2.

    Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A, Schmidt SV, Schultze JL (2012) High-resolution transcriptome of human macrophages. PLoS ONE 7(9):e45466

  3. 3.

    Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360(6401):258–261

  4. 4.

    Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K, Kuhn R (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4

  5. 5.

    Evans V, Hatzopoulos A, Aird WC, Rayburn HB, Rosenberg RD, Kuivenhoven JA (2000) Targeting the Hprt locus in mice reveals differential regulation of Tie2 gene expression in the endothelium. Physiol Genomics 2(2):67–75

  6. 6.

    Felio K, Nguyen H, Dascher CC, Choi HJ, Li S, Zimmer MI, Colmone A, Moody DB, Brenner MB, Wang CR (2009) CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J Exp Med 206(11):2497–2509

  7. 7.

    Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O (1998) Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187(6):961–966

  8. 8.

    Guillot PV, Liu L, Kuivenhoven JA, Guan J, Rosenberg RD, Aird WC (2000) Targeting of human eNOS promoter to the Hprt locus of mice leads to tissue-restricted transgene expression. Physiol Genomics 2(2):77–83

  9. 9.

    Hams E, Saunders SP, Cummins EP, O’Connor A, Tambuwala MT, Gallagher WM, Byrne A, Campos-Torres A, Moynagh PM, Jobin C, Taylor CT, Fallon PG (2011) The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by B1 cells. Shock 36(3):295–302

  10. 10.

    Heaney JD, Rettew AN, Bronson SK (2004) Tissue-specific expression of a BAC transgene targeted to the Hprt locus in mouse embryonic stem cells. Genomics 83(6):1072–1082

  11. 11.

    Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68(4):695–709

  12. 12.

    Hohenstein P, Slight J, Ozdemir DD, Burn SF, Berry R, Hastie ND (2008) High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. Pathogenetics 1(1):3

  13. 13.

    Ichise H, Ichise T, Sasanuma H, Yoshida N (2014) The Cd6 gene as a permissive locus for targeted transgenesis in the mouse. Genesis 52(5):440–450

  14. 14.

    Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25(12):1477–1482

  15. 15.

    Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, Sedlacek R (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588(21):3982–3988

  16. 16.

    Kisseberth WC, Brettingen NT, Lohse JK, Sandgren EP (1999) Ubiquitous expression of marker transgenes in mice and rats. Dev Biol 214(1):128–138

  17. 17.

    Kim JH, Hu Y, Yongqing T et al (2016) CD1a on Langerhans cells controls inflammatory skin disease. Nat Immunol 17(10):1159–1166. https://doi.org/10.1038/ni.3523

  18. 18.

    Kobayashi C, Shiina T, Tokioka A, Hattori Y, Komori T, Kobayashi-Miura M, Takizawa T, Takahara K, Inaba K, Inoko H, Takeya M, Dranoff G, Sugita M (2012) GM-CSF-independent CD1a expression in epidermal Langerhans cells: evidence from human CD1A genome-transgenic mice. J Invest Dermatol 132(1):241–244

  19. 19.

    Kong Q, Hai T, Ma J, Huang T, Jiang D, Xie B, Wu M, Wang J, Song Y, Wang Y, He Y, Sun J, Hu K, Guo R, Wang L, Zhou Q, Mu Y, Liu Z (2014) Rosa26 locus supports tissue-specific promoter driving transgene expression specifically in pig. PLoS ONE 9(9):e107945

  20. 20.

    Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475(7355):217–221

  21. 21.

    Li S, Flisikowska T, Kurome M, Zakhartchenko V, Kessler B, Saur D, Kind A, Wolf E, Flisikowski K, Schnieke A (2014) Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS ONE 9(7):e102455

  22. 22.

    Li X, Yang Y, Bu L, Guo X, Tang C, Song J, Fan N, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yi X, Quan L, Liu S, Yang Z, Ouyang H, Chen YE, Wang Z, Lai L (2014) Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24(4):501–504

  23. 23.

    Li YS, Meng RR, Chen X, Shang CL, Li HB, Zhang TJ, Long HY, Li HQ, Wang YJ, Wang FC (2019) Generation of H11-albumin-rtTA transgenic mice: a tool for inducible gene expression in the liver. G3 (Bethesda) 9(2):591–599

  24. 24.

    Ma Y, Yu L, Pan S, Gao S, Chen W, Zhang X, Dong W, Li J, Zhou R, Huang L, Han Y, Bai L, Zhang L, Zhang L (2017) CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP-mediated lineage tracing. FEBS J 284(19):3262–3277

  25. 25.

    Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knopfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958

  26. 26.

    Mao X, Fujiwara Y, Chapdelaine A, Yang H, Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97(1):324–326

  27. 27.

    Mao X, Fujiwara Y, Orkin SH (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci USA 96(9):5037–5042

  28. 28.

    Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R, Arenillas DJ, Buchman S, Chen CY, Chou A, Ienasescu H, Lim J, Shyr C, Tan G, Zhou M, Lenhard B, Sandelin A, Wasserman WW (2014) JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42(Database issue):D142–D147

  29. 29.

    Miyazaki S, Miyazaki T, Tashiro F, Yamato E, Miyazaki J (2005) Development of a single-cassette system for spatiotemporal gene regulation in mice. Biochem Biophys Res Commun 338(2):1083–1088

  30. 30.

    Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, Maetens M, De Clercq S, Drogat B, Haenebalcke L, Bartunkova S, De Vos I, De Craene B, Karimi M, Berx G, Nagy A, Hilson P, Marine JC, Haigh JJ (2009) Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 37(7):e55

  31. 31.

    Palais G, Nguyen Dinh Cat A, Friedman H, Panek-Huet N, Millet A, Tronche F, Gellen B, Mercadier JJ, Peterson A, Jaisser F (2009) Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 37(2):140–146

  32. 32.

    Papapetrou EP, Schambach A (2016) Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24(4):678–684

  33. 33.

    Quadros RM, Harms DW, Ohtsuka M, Gurumurthy CB (2015) Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system. FEBS Open Bio 5:191–197

  34. 34.

    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

  35. 35.

    Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H, Yanru Chen-Tsai R, Li K (2015) Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5:14253

  36. 36.

    Sadelain M, Papapetrou EP, Bushman FD (2012) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12(1):51–58

  37. 37.

    Schmitz F, Burtscher I, Stauber M, Gossler A, Lickert H (2017) A novel Cre-inducible knock-in ARL13B-tRFP fusion cilium reporter. Genesis 55(11):e23073

  38. 38.

    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71

  39. 39.

    Strathdee D, Ibbotson H, Grant SG (2006) Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS ONE 1:e4

  40. 40.

    Tasic B, Hippenmeyer S, Wang C, Gamboa M, Zong H, Chen-Tsai Y, Luo L (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA 108(19):7902–7907

  41. 41.

    Tasic B, Miyamichi K, Hippenmeyer S, Dani VS, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS ONE 7(3):e33332

  42. 42.

    Vivian JL, Klein WH, Hasty P (1999) Temporal, spatial and tissue-specific expression of a myogenin-lacZ transgene targeted to the Hprt locus in mice. Biotechniques 27(1):154–162

  43. 43.

    Wang M, Sun Z, Zou Z, Ding F, Li L, Wang H, Zhao C, Li N, Dai Y (2018) Efficient targeted integration into the bovine Rosa26 locus using TALENs. Sci Rep 8(1):10385

  44. 44.

    Wu M, Wei C, Lian Z, Liu R, Zhu C, Wang H, Cao J, Shen Y, Zhao F, Zhang L, Mu Z, Wang Y, Wang X, Du L, Wang C (2016) Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Sci Rep 6:24360

  45. 45.

    Yang D, Song J, Zhang J, Xu J, Zhu T, Wang Z, Lai L, Chen YE (2016) Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression. Sci Rep 6:25161

  46. 46.

    Yang GS, Banks KG, Bonaguro RJ, Wilson G, Dreolini L, de Leeuw CN, Liu L, Swanson DJ, Goldowitz D, Holt RA, Simpson EM (2009) Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. Genomics 93(3):196–204

  47. 47.

    Yu Y, Wang Y, Tong Q, Liu X, Su F, Quan F, Guo Z, Zhang Y (2013) A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PLoS ONE 8(5):e62457

  48. 48.

    Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94(8):3789–3794

  49. 49.

    Zeng H, Horie K, Madisen L, Pavlova MN, Gragerova G, Rohde AD, Schimpf BA, Liang Y, Ojala E, Kramer F, Roth P, Slobodskaya O, Dolka I, Southon EA, Tessarollo L, Bornfeldt KE, Gragerov A, Pavlakis GN, Gaitanaris GA (2008) An inducible and reversible mouse genetic rescue system. PLoS Genet 4(5):e1000069

  50. 50.

    Zhu F, Gamboa M, Farruggio AP, Hippenmeyer S, Tasic B, Schule B, Chen-Tsai Y, Calos MP (2014) DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res 42(5):e34

  51. 51.

    Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492

Download references

Acknowledgements

J.B. is a Postgraduate Research Scholar funded by the Irish Research Council under the Government of Ireland Programme (GOIPG/2015/3729), M.R. was a Masters of Immunology Student at Trinity College Dublin. This work was supported by the National Children Research Centre. E.H. is a postdoctoral researcher funded by an SFI starting investigator research grant (15/SIRG/3473).

Author information

VPK and PGF conceived and designed the study. JB, MR, EH, SM, and FS performed the experiments. JB, MR, EH, SM, FS, VPK and PGF interpreted the results. JB and VPK wrote the manuscript.

Correspondence to Vincent P. Kelly.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Browning, J., Rooney, M., Hams, E. et al. Highly efficient CRISPR-targeting of the murine Hipp11 intergenic region supports inducible human transgene expression. Mol Biol Rep 47, 1491–1498 (2020) doi:10.1007/s11033-019-05204-9

Download citation

Keywords

  • Intergenic site 2
  • Isg2
  • Hipp11
  • H11
  • Safe-harbor locus
  • Humanized mice
  • CRISPR-Cas9
  • CD1A