Advertisement

The complete mitochondrial genomes of two octopods of the eastern Pacific Ocean: Octopus mimus and ‘Octopusfitchi (Cephalopoda: Octopodidae) and their phylogenetic position within Octopoda

  • Erika Magallón-Gayón
  • Miguel Ángel del Río-Portilla
  • Irene de los Angeles Barriga-SosaEmail author
Original Article

Abstract

The complete mitochondrial genomes of two important octopus species from the eastern Pacific were sequenced, obtaining their complete nucleotide sequences. Octopus mimus is the most important commercially catched species along the eastern Pacific, from Mexico to Chile, whereas ‘Octopusfitchi is a pigmy species with uncertain taxonomic genus. The mitogenomes of Octopus mimus and ‘Octopusfitchi were 15,696 and 15,780 base pairs (bp) in length with an A + T composition of 75.5% and 75.8%, respectively. Each genome contains 13 protein-coding genes, 22 tRNA genes, and two rRNA genes, as well as a control region. Gene order is maintained as reported for other species of the Octopodidae. The phylogenetic analysis based on the concatenated thirteen protein-coding genes confirms that O. mimus belongs to the genus Octopus, which is supported by the genetic distance (11–16%) whereas the position of ‘O’. fitchi within this group it is not supported. The analysis also indicated that the phylogenetic position of ‘O’. fitchi is closer to Callistoctopus than to the Cistopus or the Amphioctopus clades. Based on the tree topology and the high genetic distance observed (24–25%), we suggest that ‘O. fitchi might represent a different genus.

Keywords

Octopus mimus Octopusfitchi Mitogenome Phylogeny 

Notes

Acknowledgements

First author received a postdoctoral fellowship from National Council for Science and Technology (CONACyT). This study was partially supported by Grants UAM-147.09.01, 147.09.04 & 147.09.07 to IDLABS and PRODEP project 14713349 to MADRP.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study did not require ethical approval as the tissue samples were collected from local artisanal fisheries.

References

  1. 1.
    Norman MD, Finn JK, Hochberg FG (2014) Family Octopodidae. In: Jereb P, Roper CFE, Norman MD, Finn JK (eds) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date, No. 4, Vol. 3, FAO Species Catalogue for Fishery Purposes, RomeGoogle Scholar
  2. 2.
    Hanlon RT (1988) Behavioral and body patterning characters useful in taxonomy and field identification of cephalopods. Malacologia 29:247–264Google Scholar
  3. 3.
    Söller R, Warnke K, Saint-Paul U, Blohm D (2000) Sequence divergence of mitochondrial DNA indicates cryptic biodiversity in Octopus vulgaris and supports the taxonomic distinctiveness of Octopus mimus (Cephalopoda: Octopodidae). Mar Biol 136:29–35CrossRefGoogle Scholar
  4. 4.
    Guzik MT, Norman MD, Crozier RH (2005) Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Mol Phylogenet Evol 37:235–248PubMedCrossRefGoogle Scholar
  5. 5.
    Kaneko N, Kubodera T, Iguchis K (2011) Taxonomic study of shallow-water octopuses (Cephalopoda: Octopodidae) in Japan and adjacent waters using mitochondrial genes with perspectives on octopus DNA barcoding. Malacologia 54:97–108CrossRefGoogle Scholar
  6. 6.
    Toussaint RK, Scheel D, Sage GK, Talbot SL (2012) Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska. Conserv Genet 13:1483–1497CrossRefGoogle Scholar
  7. 7.
    Amor MD, Norman MD, Roura A et al (2017) Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zool Scr 46:275–288CrossRefGoogle Scholar
  8. 8.
    Amor MD, Doyle SR, Norman MD et al (2019) Genome-wide sequencing uncovers cryptic diversity and mito-nuclear discordance in the Octopus vulgaris species complex. BioRxiv.  https://doi.org/10.1101/573493 CrossRefGoogle Scholar
  9. 9.
    Gleadall IG (2016) Octopus sinensis d’Orbigny, 1841 (Cephalopoda: Octopodidae): Valid species name for the commercially valuable East Asian common octopus. Species Divers 21:31–42CrossRefGoogle Scholar
  10. 10.
    WORMS. http://www.marinespecies.org. Accessed 09 Sept 2019
  11. 11.
    Warnke K (1999) Observations on the embryonic development of Octopus mimus (Mollusca: Cephalopoda) from Northern Chile. Veliger 42:211–217Google Scholar
  12. 12.
    Warnke K, Söller R, Blohm D, Saint-Paul U (2002) Assessment of the phylogenetic relationship between Octopus vulgaris Cuvier, 1797 and O. mimus Gould, 1852, in combination with morphological characters. Abhandlungen der Geol Bundesanstalt 57:401–405Google Scholar
  13. 13.
    Pliego-Cárdenas R, Hochberg FG, García DeLeón FJ, Barriga-Sosa IDLA (2014) Close Genetic Relationships between Two American Octopuses: Octopus hubbsorum Berry, 1953, and Octopus mimus Gould, 1852. J Shellfish Res 33:293–303CrossRefGoogle Scholar
  14. 14.
    Leyva-Villarreal MM, Osuna-Marroquín SA, Ley-Montoya AL, Cervantes-Galaviz F, Quiñónez-Cruz JA (1987) Contribución al conocimiento biológico del pulpo Octopus sp. en la Bahía de Mazatlán, Sinaloa. In: Memorias de Servicio Social. Escuela de Ciencias del Mar. Universidad Autónoma de SinaloaGoogle Scholar
  15. 15.
    Mejía-Sarmiento B, Leyva-Villarreal MM, Osuna-Marroquín SA, Leyva-Montoya AL (1987) Contribución al conocimiento biológico del pulpo Octopus veligero (Berry, 1953) en Bahía de Mazatlán, Sinaloa, México. In: VII Congreso Nacional de Oceanografía, Ensenada, MéxicoGoogle Scholar
  16. 16.
    González-Rendón R, Mejía-Sarmiento B, Lizárraga-Castañeda F, Lizárraga-Ortiz S (1990) Artes y métodos de captura para el pulpo en la Bahía de Mazatlán, México. Dissertation, Universidad Autónoma de SinaloaGoogle Scholar
  17. 17.
    Rodríguez-Mata F (1966) Aspectos biológicos y pesqueros del complejo Octopus bimaculatus Verrill, 1883 y O. bimaculoides Pickford and McConnaughey, 1949 (pulpos) de la Bahía Zihuatanejo, Guerrero, México. Dissertation, Universidad Michoacana de San Nicolás HidalgoGoogle Scholar
  18. 18.
    Lima FD, Berbel-Filho WM, Leite TS et al (2017) Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification to octopus fisheries management. Mar Biodivers 47:723–734CrossRefGoogle Scholar
  19. 19.
    Domínguez-Contreras JF, Munguia-Vega A, Ceballos-Vázquez BP et al (2018) Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico. PeerJ 6:e4295PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    López-Uriarte E, Ríos-Jara E, Pérez-Peña M (2005) Range extension for Octopus hubbsorum (Mollusca: Octopodidae) in the Mexican Pacific. Bull Mar Sci 77:171–175Google Scholar
  21. 21.
    Domínguez-Contreras JF, Ceballos-Vázquez BP, Hochberg FG, Arellano-Martínez M (2013) A new record in a well-established population of Octopus hubbsorum (Cephalopoda: Octopodidae) expands its known geographic distribution range and maximum size. Am Malacol Bull 31:95–99CrossRefGoogle Scholar
  22. 22.
    Berry S (1953) Preliminary diagnosis of six west American species of octopus. Leafl Malacol 1:51–58Google Scholar
  23. 23.
    Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30CrossRefGoogle Scholar
  24. 24.
    Gould AA (1852) Mollusca and shells. In: United States exploring expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes, U.S.N. Philadelphia, pp 1–510Google Scholar
  25. 25.
    Guerra Á, Cortez T, Rocha F (1999) Redescripción del pulpo de los Changos, Octopus mimus Gould, 1852, del litoral chileno-peruano (Mollusca, Cephalopoda). Iberus 17:37–57Google Scholar
  26. 26.
    Pliego-Cárdenas R, Flores L, Markaida U et al (2016) Genetic evidence of the presence of Octopus mimus in the artisanal fisheries of octopus in Santa Elena Peninsula, Ecuador. Am Malacol Bull 34:51–55CrossRefGoogle Scholar
  27. 27.
    Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR- based techniques. Nucleic Acids Res 25:4692–4693PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Faircloth BC, Glenn TC (2012) Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PLoS ONE 7(8):e42543PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
  30. 30.
    Afgan E, Baker D, Batut B et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255PubMedCrossRefGoogle Scholar
  32. 32.
    Bernt M, Donath A, Jühling F et al (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319PubMedCrossRefGoogle Scholar
  33. 33.
    Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Laslett D, Canbäck B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172–175PubMedCrossRefGoogle Scholar
  35. 35.
    Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gasteiger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
  38. 38.
    Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  40. 40.
    Xia X (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 35:1550–1552PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  44. 44.
    Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New OrleansGoogle Scholar
  45. 45.
    Domínguez-Contreras JF, Munguia-Vega A, Ceballos-Vázquez BP, et al (2015) The complete mitochondrial genome of Octopus bimaculatus Verrill, 1883 from the Gulf of California. Mitochondrial DNA, pp 1–2Google Scholar
  46. 46.
    Yokobori SI, Fukuda N, Nakamura M et al (2004) Long-term conservation of six duplicated structural genes in cephalopod mitochondrial genomes. Mol Biol Evol 21:2034–2046PubMedCrossRefGoogle Scholar
  47. 47.
    Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106:135–159PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cheng R, Zheng X, Ma Y, Li Q (2013) The complete mitochondrial genomes of two octopods Cistopus chinensis and Cistopus taiwanicus: revealing the phylogenetic position of the genus Cistopus within the order octopoda. PLoS ONE 8(12):e84216PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Akasaki T, Nikaido M, Tsuchiya K et al (2006) Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Mol Phylogenet Evol 38:648–658PubMedCrossRefGoogle Scholar
  50. 50.
    Cheng R, Zheng X, Lin X et al (2012) Determination of the complete mitochondrial DNA sequence of Octopus minor. Mol Biol Rep 39:3461–3470PubMedCrossRefGoogle Scholar
  51. 51.
    Ma Y, Zheng X, Cheng R, Li Q (2016) The complete mitochondrial genome of Octopus conispadiceus (Sasaki, 1917) (Cephalopoda: Octopodidae). Mitochondrial DNA 27:1058–1059PubMedCrossRefGoogle Scholar
  52. 52.
    Tang Y, Zheng X, Ma Y et al (2018) The complete mitochondrial genome of Amphioctopus marginatus (Cephalopoda: Octopodidae) and the exploration for the optimal DNA barcoding in Octopodidae. Conserv Genet Resour 10:115–118CrossRefGoogle Scholar
  53. 53.
    Uribe JE, Zardoya R (2017) Revisiting the phylogeny of Cephalopoda using complete mitochondrial genomes. J Molluscan Stud 83:133–144CrossRefGoogle Scholar
  54. 54.
    Sanchez G, Setiamarga DHE, Tuanapaya S et al (2018) Genus-level phylogeny of cephalopods using molecular markers: current status and problematic areas. PeerJ 6:e4331PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Villanueva R, Norman MD (2008) Biology of the planktonic stages of benthic octopuses. Oceanogr Mar Biol Annu Rev 46:105–202Google Scholar
  56. 56.
    Boletzky SV (2003) A lower limit to adult size in coleoid Cephalopods: elements of a discussion. Berliner Paläobiol Abh 3:19–28Google Scholar
  57. 57.
    Zhang X, Zheng X, Ma Y, Li Q (2017) Complete mitochondrial genome and phylogenetic relationship analyses of Amphioctopus aegina (Gray, 1849) (Cephalopoda: Octopodidae). Mitochondrial DNA A 28:17–18CrossRefGoogle Scholar
  58. 58.
    Chiu YW, Chang CW, Du Lin H, Shen KN (2018) The complete mitogenome of the winged argonaut Argonauta hians and its phylogenetic relationships in Octopoda. Conserv Genet Resour 10:359–362CrossRefGoogle Scholar
  59. 59.
    Yokobori SI, Lindsay DJ, Yoshida M et al (2007) Mitochondrial genome structure and evolution in the living fossil vampire squid, Vampyroteuthis infernalis, and extant cephalopods. Mol Phylogenet Evol 44:898–910PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratorio de Genética y Biología Molecular, Planta Experimental de Producción AcuícolaUniversidad Autónoma Metropolitana Unidad IztapalapaMexico CityMexico
  2. 2.Departamento de AcuiculturaCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico

Personalised recommendations