Nesprin-1 impact on tumorigenic cell phenotypes

  • Ilknur Sur-ErdemEmail author
  • Muhammed Sajid Hussain
  • Maria Asif
  • Nareg Pınarbası
  • Ali Cenk Aksu
  • Angelika A. Noegel
Original Article


The largest protein of the nuclear envelope (NE) is Nesprin-1 which forms a network along the NE interacting with actin, Emerin, Lamin, and SUN proteins. Mutations in the SYNE1 gene and reduction in Nesprin-1 protein levels have been reported to correlate with several age related diseases and cancer. In the present study, we tested whether Nesprin-1 overexpression can reverse the malignant phenotype of Huh7 cells, a human liver cancer cell line, which carries a mutation in the SYNE1 gene resulting in reduced Nesprin-1 protein levels, has altered nuclear shape, altered amounts and localization of NE components, centrosome localization and genome stability. Ectopic expression of a mini-Nesprin-1 led to an improvement of the nuclear shape, corrected the mislocalization of NE proteins, the centrosome positioning, and the alterations in the DNA damage response network. Additionally, Nesprin-1 had a profound effect on cellular senescence. These findings suggest that Nesprin-1 may be effective in tumorigenic cell phenotype correction of human liver cancer.


Nuclear envelope Nesprin-1 Genome stability Cancer Cellular senescence 



We thank to Dr. Reena Buurman for providing the THLE-2 cells, Rolf Müller for cloning, Dr. V. S. Peche for helping at various stages of this work, and Berthold Gaβen for providing antibodies. The authors gratefully acknowledge the use of services and facilities of the Koç University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget. The work was supported by the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD).

Compliance with ethical standards

Conflict of interest

All the authors declare that they do not have any competing interests.

Supplementary material

11033_2019_5184_MOESM1_ESM.docx (4.6 mb)
Supplementary material 1 (DOCX 4709 kb)


  1. 1.
    Starr DA, Fridolfsson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26:421–444PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Chang W, Worman HJ, Gundersen GG (2015) Accessorizing and anchoring the LINC complex for multifunctionality. JCB 208:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 118:3419–3430PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rajgor D, Mellad JA, Autore F, Zhang Q, Shanahan CM (2012) Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLoS ONE 7:e40098PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115:3207–3222PubMedPubMedCentralGoogle Scholar
  6. 6.
    Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, Karakesisoglou I, Korenbaum E (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295:330–339PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yu J, Lei K, Zhou M, Craft CM, Xu G, Xu T, Zhuang Y, Xu R, Han M (2011) KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum Mol Genet 20:1061–1073PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Schneider M, Lu W, Neumann S, Brachner A, Gotzmann J, Noegel AA, Karakesisoglou I (2011) Molecular mechanisms of centrosome and cytoskeleton anchorage at the nuclear envelope. Cell Mol Life Sci 68:1593–1610PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wilhelmsen K, Litjens SH, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171:799–810PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B (2009) Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci USA 106:2194–2199PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Mellad JA, Warren DT, Shanahan CM (2011) Nesprins LINC the nucleus and cytoskeleton. Curr Opin Cell Biol 23:47–54PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M (2005) Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci USA 102:4359–4364PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zhang J, Felder A, Liu Y, Guo LT, Lange S, Dalton ND, Gu Y, Peterson KL, Mizisin AP, Shelton GD, Lieber RL, Chen J (2010) Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19:329–341PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Puckelwartz MJ, Kessler E, Zhang Y, Hodzic D, Randles KN, Morris G, Earley JU, Hadhazy M, Holaska JM, Mewborn SK, Pytel P, McNally EM (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Morgan JT, Pfeiffer ER, Thirkill TL, Kumar P, Peng G, Fridolfsson HN, Douglas GC, Starr DA, Barakat AI (2011) Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Mol Biol Cell 22:4324–4334PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Khatau SB, Bloom RJ, Bajpai S, Razafsky D, Zang S, Giri A, Wu PH, Marchand J, Celedon A, Hale CM, Sun SX, Hodzic D, Wirtz D (2012) The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci Rep 2:488PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, Verreault S, Sanes JR, Bouchard JP, Rouleau GA (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT, Wheeler MA, Ellis JA, Skepper JN, Vorgerd M, Schlotter-Weigel B, Weissberg PL, Roberts RG, Wehnert M, Shanahan CM (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Attali R, Warwar N, Israel A, Gurt I, McNally E, Puckelwartz M, Glick B, Nevo Y, Ben-Neriah Z, Melki J (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12:196–209PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Broers JL, Raymond Y, Rot MK, Kuijpers H, Wagenaar SS, Ramaekers FC (1993) Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am J Pathol 143:211–220PubMedPubMedCentralGoogle Scholar
  23. 23.
    Somech R, Gal-Yam EN, Shaklai S, Geller O, Amariglio N, Rechavi G, Simon AJ (2007) Enhanced expression of the nuclear envelope LAP2 transcriptional repressors in normal and malignant activated lymphocytes. Ann Hematol 86:393–401PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Capo-chichi CD, Cai KQ, Testa JR, Godwin AK, Xu X (2009) Loss of GATA6 leads to nuclear deformation and aneuploidy in ovarian cancer. Mol Cell Biol 29:4766–4777PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Martinez N, Alonso A, Moragues MD, Ponton J, Schneider J (1999) The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res 59:5408–5411Google Scholar
  26. 26.
    Naylor R, Jeganathan K, Cao X, van Deursen J (2016) Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy. J Clin Invest 126:543–559PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhao ZR, Zhang LJ, Wang YY, Li F, Wang MW, Sun XF (2012) Increased serum level of Nup88 protein is associated with the development of colorectal cancer. Med Oncol 29:1789–1795CrossRefGoogle Scholar
  28. 28.
    Schneider J, Martínez Arribas F, Torrejon R (2010) Nup88 expression is associated with myometrial invasion in endometrial carcinoma. Int J Gynecol Cancer 20:804–808PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YI, Sohn TS, Noh JH, Jung G (2002) Proteome analysis of hepatocellular carcinoma. Biochem Biophys Res Commun 291:1031–1037PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Marmé A, Zimmermann HP, Moldenhauer G, Schorpp-Kistner M, Müller C, Keberlein O, Giersch A, Kretschmer J, Seib B, Spiess E, Hunziker A, Merchán F, Möller P, Hahn U, Kurek R, Marmé F, Bastert G, Wallwiener D, Ponstingl H (2008) Loss of Drop1 expression already at early tumor stages in a wide range of human carcinomas. Int J Cancer 123:2048–2056PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Doherty JA, Rossing MA, Cushing-Haugen KL, Chen C, Van Den Berg DJ, Wu AH, Pike MC, Ness RB, Moysich K, Chenevix-Trench G, Beesley J, Webb PM, Chang-Claude J, Wang-Gohrke S, Goodman MT, Lurie G, Thompson PJ, Carney ME, Hogdall E, Kjaer SK, Hogdall C, Goode EL, Cunningham JM, Fridley BL, Vierkant RA, Berchuck A, Moorman PG, Schildkraut JM, Palmieri RT, Cramer DW, Terry KL, Yang HP, Garcia-Closas M, Chanock S, Lissowska J, Song H, Pharoah PD, Shah M, Perkins B, McGuire V, Whittemore AS, Di Cioccio RA, Gentry-Maharaj A, Menon U, Gayther SA, Ramus SJ, Ziogas A, Brewster W, Anton-Culver H (2010) Australian Ovarian Cancer Study Management Group; Australian Cancer Study (Ovarian Cancer); Ovarian Cancer Association Consortium (OCAC). ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study. Cancer Epidemiol Biomarkers Prev 19:245–250PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Saleembhasha A, Mishra S (2019) Long non-coding RNAs as pan-cancer master gene regulators of associated protein-coding genes: a systems biology approach. PeerJ 7:e6388PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sur I, Neumann S, Noegel AA (2014) Nesprin-1 role in DNA damage response. Nucleus 5:173–191PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Longerich T, Breuhahn K, Odenthal M, Petmecky Katharina, Schirmacher Peter (2004) Factors of transforming growth factor β signalling are co-regulated in human hepatocellular carcinoma. Virchows Arch 445:589PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Buurman R, Gürlevik E, Schäffer V, Eilers M, Sandbothe M, Kreipe H, Wilkens L, Schlegelberger B, Kühnel F, Skawran B (2012) Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology 143(3):811–820PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Taranum S, Sur I, Muller R, Lu W, Rashmi RN, Munck M, Neumann S, Karakesisoglou I, Noegel AA (2012) Cytoskeletal interactions at the nuclear envelope mediated by nesprins. Int J Cell Biol 2012:736524PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Noren Hooten N, Evans MK (2017) Techniques to induce and quantify cellular senescence. J Vis Exp. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vaughan A, Alvarez-Reyes M, Bridger JM, Broers JL, Ramaekers FC, Wehnert M, Morris GE, Whitfield WGF, Hutchison CJ (2001) Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J Cell Sci 114:2577–2590PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim HJ, Hwang SH, Han ME, Baek S, Shim HE, Yoon S, Baek SY, Kim BS, Kim JH, Kim SY, Oh SO (2012) LAP2 is widely overexpressed in diverse digestive tract cancers and regulates motility of cancer cells. PLoS ONE 7:e39482PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ (2007) A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J Cell Biol 178:897–904PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fukasawa K (2005) Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230:6–19PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nigg EA (2006) Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 119:2717–2723PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Riches LC, Lynch AM, Gooderham NJ (2008) Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 23:331–339PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Marti TM, Hefner E, Feeney L, Natale V, Cleaver JE (2006) H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci USA 103:9891–9896PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417:639–650PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    La Porta CA, Zapperi S, Sethna JP (2012) Senescent cells in growing tumors: population dynamics and cancer stem cells. PLoS Comput Biol 8:e1002316PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Carnero A (2012) Markers of cellular senescence. Methods Mol Biol 965:63–81CrossRefGoogle Scholar
  51. 51.
    Wang AS, Dreesen O (2018) Biomarkers of cellular senescence and skin aging. Front Genet 9:247PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zhong Z, Chang SA, Kalinowski A, Wilson KL, Dahl KN (2010) Stabilization of the spectrin-like domains of nesprin-1alpha by the evolutionarily conserved “adaptive” domain. Cell Mol Bioeng 3:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 314:1892–1905PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fife CM, McCarroll JA, Kavallaris M (2014) Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 171:5507–5523PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lu W, Schneider M, Neumann S, Jaeger VM, Taranum S, Munck M, Cartwright S, Richardson C, Carthew J, Noh K, Goldberg M, Noegel AA, Karakesisoglou I (2012) Nesprin interchain associations control nuclear size. Cell Mol Life Sci 69:3493–3509PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Jahed Z, Soheilypour M, Peyro M, Mofrad MRK (2016) The LINC and NPC relationship—it’s complicated! J Cell Sci 129:3219–3229PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Infante E, Castagnino A, Ferrari R, Monteiro P, Aguera-Gonzalez S, Paul-Gilloteaux P, Domingues MJ, MaiuriRaab P, Shanahan CM, Baffet A, Piel M, Gomes ER, Chavrie P (2018) LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat Commun 9:2443PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Preston C, Faustino R (2018) Nuclear envelope regulation of oncogenic processes: roles in pancreatic cancer. Epigenomes 2:15CrossRefGoogle Scholar
  59. 59.
    Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    di Masi A, D’Apice MR, Ricordy R, Tanzarella C, Novelli G (2008) The R527H mutation in LMNA gene causes an increased sensitivity to ionizing radiation. Cell Cycle 7:2030–2037PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadiñanos J, López-Otín C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KSE, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Le Dour C, Schneebeli S, Bakiri F, Darcel F, Jacquemont ML, Maubert MA, Auclair M, Jeziorowska D, Reznik Y, Bereziat V, Capeau J, Lascols O, Vigouroux C (2011) A homozygous mutation of prelamin-A preventing its farnesylation and maturation leads to a severe lipodystrophic phenotype: new insights into the pathogenicity of nonfarnesylated prelamin-A. J Clin Endocrinol Metab 96:E856–E862PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Taranum S, Vaylann E, Meinke P, Abraham S, Yang L, Neumann S, Karakesisoglou I, Wehnert M, Noegel AA (2012) LINC complex alterations in DMD and EDMD/CMT fibroblasts. Eur J Cell Biol 91:614–628PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda Fagagna FA (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    d’Adda di Fagagna FA (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Biochemistry I, Medical FacultyUniversity Hospital CologneCologneGermany
  2. 2.Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)University of CologneCologneGermany
  3. 3.Koç University School of MedicineIstanbulTurkey
  4. 4.Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
  5. 5.Cologne Center for Genomics (CCG)University of CologneCologneGermany

Personalised recommendations