Advertisement

Campylobacter jejuni isolated from poultry meat in Brazil: in silico analysis and genomic features of two strains with different phenotypes of antimicrobial susceptibility

  • Simone de Fátima Rauber Würfel
  • Sérgio JorgeEmail author
  • Natasha Rodrigues de Oliveira
  • Frederico Schmitt Kremer
  • Christian Domingues Sanchez
  • Vinícius Farias Campos
  • Luciano da Silva Pinto
  • Wladimir Padilha da Silva
  • Odir Antônio Dellagostin
Original Article

Abstract

Campylobacter jejuni is the most common bacterial cause of foodborne diarrheal disease worldwide and is among the antimicrobial resistant “priority pathogens” that pose greatest threat to public health. The genomes of two C. jejuni isolated from poultry meat sold on the retail market in Southern Brazil phenotypically characterized as multidrug-resistant (CJ100) and susceptible (CJ104) were sequenced and analyzed by bioinformatic tools. The isolates CJ100 and CJ104 showed distinct multilocus sequence types (MLST). Comparative genomic analysis revealed a large number of single nucleotide polymorphisms, rearrangements, and inversions in both genomes, in addition to virulence factors, genomic islands, prophage sequences, and insertion sequences. A circular 103-kilobase megaplasmid carrying virulence factors was identified in the genome of CJ100, in addition to resistance mechanisms to aminoglycosides, beta-lactams, macrolides, quinolones, and tetracyclines. The molecular characterization of distinct phenotypes of foodborne C. jejuni and the discovery of a novel virulence megaplasmid provide useful data for pan-genome and large-scale studies to monitor the virulent C. jejuni in poultry meat is warranted.

Keywords

Genomics Bioinformatics Megaplasmid Antimicrobial resistance Virulence factors 

Notes

Acknowledgements

This study was financed in party by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES—Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Grant 309101/2016-6), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS-Grant 17/2551-0000956-8).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11033_2019_5174_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 2053 kb)

References

  1. 1.
    Kinana AD, Cardinale E, Tall F, et al (2006) Genetic diversity and quinolone resistance in Campylobacter jejuni isolates from Poultry in Senegal. Appl Environ Microbiol 72:3309–3313.  https://doi.org/10.1128/AEM.72.5.3309-3313.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Frazão MR, Medeiros MIC, Da Silva Duque S, Falcão JP (2017) Pathogenic potential and genotypic diversity of Campylobacter jejuni: a neglected food-borne pathogen in Brazil. J Med Microbiol 66:350–359.  https://doi.org/10.1099/jmm.0.000424 CrossRefPubMedGoogle Scholar
  3. 3.
    Young KT, Davis LM, DiRita VJ (2007) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679CrossRefGoogle Scholar
  4. 4.
    Wieczorek K, Osek J (2013) Antimicrobial Resistance Mechanisms among Campylobacter. Biomed Res Int 2013:1–12.  https://doi.org/10.1155/2013/340605 CrossRefGoogle Scholar
  5. 5.
    Silva WC, Targino BN, Mendonça RS, et al (2018) Campylobacter: an overview of cases, occurrence in food, contamination sources, and antimicrobial resistance in Brazil. Food Rev Int 34:364–389CrossRefGoogle Scholar
  6. 6.
    Fouts DE, Mongodin EF, Mandrell RE, et al (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species. PLoS Biol 3:e15.  https://doi.org/10.1371/journal.pbio.0030015 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    CDC- Centers for Disease Control and Prevention (2017) Campylobacter (Campylobacteriosis) | Campylobacter | CDC. https://www.cdc.gov/campylobacter/index.html
  8. 8.
    Bolton DJ (2015) Campylobacter virulence and survival factors. Food Microbiol. 48:99–108CrossRefGoogle Scholar
  9. 9.
    Würfel SFR, da Silva WP, de Oliveira MG, et al (2019) Genetic diversity of Campylobacter jejuni and Campylobacter coli isolated from poultry meat products sold on the retail market in Southern Brazil. Poult Sci 98:932–939.  https://doi.org/10.3382/ps/pey365 CrossRefPubMedGoogle Scholar
  10. 10.
    Bankevich A, Nurk S, Antipov D, et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.  https://doi.org/10.1089/cmb.2012.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin SH, Liao YC (2013) CISA: contig integrator for sequence assembly of bacterial genomes. PLoS ONE.  https://doi.org/10.1371/journal.pone.0060843 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lu CL, Chen KT, Huang SY, Chiu HT (2014) Car: contig assembly of prokaryotic draft genomes using rearrangements. BMC Bioinform 15:381.  https://doi.org/10.1186/s12859-014-0381-3 CrossRefGoogle Scholar
  13. 13.
    Kosugi S, Hirakawa H, Tabata S (2015) GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 31:3733–41.  https://doi.org/10.1093/bioinformatics/btv465 CrossRefPubMedGoogle Scholar
  14. 14.
    Piro VC, Faoro H, Weiss VA, et al (2014) FGAP: an automated gap closing tool. BMC Res Notes 7:371.  https://doi.org/10.1186/1756-0500-7-371 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kremer FS, Eslabão MR, Dellagostin OA, Pinto L da S (2016) Genix: a new online automated pipeline for bacterial genome annotation. FEMS Microbiol Lett 363:263CrossRefGoogle Scholar
  16. 16.
    Rutherford K, Parkhill J, Crook J, et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945.  https://doi.org/10.1093/bioinformatics/16.10.944 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou Y, Liang Y, Lynch KH, et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352.  https://doi.org/10.1093/nar/gkr485 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bertelli C, Laird MR, Williams KP, et al (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35.  https://doi.org/10.1093/nar/gkx343 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hoffmann S, Otto C, Kurtz S, et al (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502.  https://doi.org/10.1371/journal.pcbi.1000502 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li H, Handsaker B, Wysoker A, et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–9.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Reumers J, Schymkowitz J, Ferkinghoff-Borg J, et al (2005) SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res. 33:D527-3CrossRefGoogle Scholar
  23. 23.
    Tatusov RL (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36.  https://doi.org/10.1093/nar/28.1.33 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Angiuoli S V., Salzberg SL (2011) Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27:334–342.  https://doi.org/10.1093/bioinformatics/btq665 CrossRefPubMedGoogle Scholar
  25. 25.
    Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245.  https://doi.org/10.1093/nar/gkw290 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Konkel ME, Hayes SF, Joens LA, Cieplak W (1992) Characteristics of the internalization and intracellular survival of Campylobacter jejuni in human epithelial cell cultures. Microb Pathog 13:357–370.  https://doi.org/10.1016/0882-4010(92)90079-4 CrossRefPubMedGoogle Scholar
  27. 27.
    Poly F, Read TD, Chen YH, et al (2008) Characterization of two Campylobacter jejuni strains for use in volunteer experimental-infection studies. Infect Immun 76:5655–5667.  https://doi.org/10.1128/IAI.00780-08 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dingle KE, Colles FM, Ure R, et al (2002) Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis 8:949–955CrossRefGoogle Scholar
  29. 29.
    Iovine NM (2013) Resistance mechanisms in Campylobacter jejuni. Virulence 4:230–240CrossRefGoogle Scholar
  30. 30.
    Corcoran D, Quinn T, Cotter L, Fanning S (2006) An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter. Int J Antimicrob Agents 27:40–45.  https://doi.org/10.1016/j.ijantimicag.2005.08.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Cagliero C, Mouline C, Cloeckaert A, Payot S (2006) Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 50:3893–3896.  https://doi.org/10.1128/AAC.00616-06 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lin J, Cagliero C, Guo B, et al (2005) Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187:7417–7424.  https://doi.org/10.1128/JB.187.21.7417-7424.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sampson TR, Weiss DS (2014) CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Front Cell Infect Microbiol 4:37.  https://doi.org/10.3389/fcimb.2014.00037 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gibreel A, Sköld O, Taylor DE (2004) Characterization of plasmid-mediated aphA-3 kanamycin resistance in Campylobacter jejuni. Microb Drug Resist 10:98–105.  https://doi.org/10.1109/ICETET.2008.78 CrossRefPubMedGoogle Scholar
  35. 35.
    Gilbert M, Brisson JR, Karwaski MF, et al (2000) Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J Biol Chem 275:3896–3906.  https://doi.org/10.1074/jbc.275.6.3896 CrossRefPubMedGoogle Scholar
  36. 36.
    Parkhill J, Wren BW, Mungall K, et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668.  https://doi.org/10.1038/35001088 CrossRefPubMedGoogle Scholar
  37. 37.
    Cao TB, Saier J (2001) Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology 147:3201–3214CrossRefGoogle Scholar
  38. 38.
    Hickey TE, McVeigh AL, Scott DA, et al (2000) Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun 68:6535–6541.  https://doi.org/10.1128/IAI.68.12.6535-6541.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Babakhani FK, Bradley GA, Joens LA (1993) Newborn piglet model for campylobacteriosis. Infect Immun 61:3466–3475PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Simone de Fátima Rauber Würfel
    • 1
  • Sérgio Jorge
    • 1
    Email author
  • Natasha Rodrigues de Oliveira
    • 1
  • Frederico Schmitt Kremer
    • 1
  • Christian Domingues Sanchez
    • 1
  • Vinícius Farias Campos
    • 1
  • Luciano da Silva Pinto
    • 1
  • Wladimir Padilha da Silva
    • 2
  • Odir Antônio Dellagostin
    • 1
  1. 1.Centro de Desenvolvimento Tecnológico, Núcleo de BiotecnologiaUniversidade Federal de PelotasPelotasBrazil
  2. 2.Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu MacielUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations