Advertisement

Genetic structure and diversity analysis of tall fescue populations by EST-SSR and ISSR markers

  • Z. Shahabzadeh
  • R. MohammadiEmail author
  • R. Darvishzadeh
  • M. Jaffari
Original Article
  • 59 Downloads

Abstract

Tall fescue is a perennial cool-season grass with economic importance especially in temperate regions of the northern hemisphere. This study was done to assess the genetic diversity and population structure of 90 tall fescue populations and cultivars using ISSR and EST-SSR markers in order to categorize valuable populations for breeding programs and to construct the core collection of tall fescue collection in Iran. The 10 EST-SSR primer pairs amplified 92 alleles. The allele numbers varied from 4 to 13 alleles per locus with an average of 9.2 alleles, of which 84 (90.6%) were polymorphic with an average of 8.4 polymorphic bands per primer. The 39 ISSR primers totally produced 387 scorable bands, of which 335 (86.6%) were polymorphic with an average of 8.6 polymorphic bands per primer. The amplified markers by ISSR primers varied from 6 to 14 markers per primer with an average of 9.92 markers per primer. The 90 tall fescue populations using both EST-SSR and ISSR data were classified into two clusters by UPGMA method that was coincide with PCA and structure analysis results. The turf-type and forage-type populations were clearly separated. Based on the results, the Iranian populations provide a valuable and novel germplasm to employ in tall fescue varietal improvement programs for both forage and turf-type applications. This progression is an important step to introduce this collection for development of a core collection of tall fescue germplasm in Iran.

Keywords

Genetic diversity Population structure Polymorphism Plant breeding 

Abbreviations

ISSR

Inter-simple sequence repeat

PCR

Polymerase chain reaction

EST-SSR

Expressed sequence tag-simple sequence repeat

UPGMA

Unweighted pair group method with arithmetic mean

PCA

Principal component analysis

PIC

Polymorphic information content

He

Expected heterozygosity

Ne

Number of effective alleles

I

Shannon’s information index

PPL

Percentage of polymorphic loci

Notes

Acknowledgements

The financial support of the Agricultural Biotechnology Research Institute of Iran (ABRII) is gratefully acknowledged.

Funding

This work was supported by the Agricultural Biotechnology Research Institute of Iran (ABRII) (Grant Numbers 12-05-05-015-96024-960689).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

No ethical issues were promulgated.

References

  1. 1.
    Jenkins TJ (1954) Interspecific and intergeneric hybrids in herbage grasses. J Genet 28:252–281.  https://doi.org/10.1007/BF02981525 CrossRefGoogle Scholar
  2. 2.
    Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with a future combining the attributes of Lolium and Festuca. Euphytica 133:19–26.  https://doi.org/10.1023/A:1025694819031 CrossRefGoogle Scholar
  3. 3.
    Spangenberg PG, Wang ZY, Wu X, Nage VA, Iglesias L, Potrykus I (1995) Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. J Plant Physiol 145:693–701.  https://doi.org/10.1016/S0176-1617(11)81283-6 CrossRefGoogle Scholar
  4. 4.
    Saikkonen K, Phillips TD, Faeth SH, McCulley RL, Saloniemi I, Helander M (2016) Performance of endophyte infected tall fescue in Europe and North America. PLoS ONE 10:1–18.  https://doi.org/10.1371/journal.pone.0157382 CrossRefGoogle Scholar
  5. 5.
    Fu K, Zhihui G, Xinquan Z, Yan F, Wendan W, Daxu L, Yan P, Linkai H, Ming S, Shiqie B, Xiao M (2016) Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers. Hereditas 153:9–20.  https://doi.org/10.1186/s41065-016-0013-1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Talukder SK, Saha MC (2017) Toward genomics-based breeding in C3 cool-season perennial grasses. Front Plant Sci 8:1317.  https://doi.org/10.3389/fpls.2017.01317 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237.  https://doi.org/10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  8. 8.
    Spooner DM, Gavrilenko T, Jansky SH, Ovchinnikova A, Krylova E, Knapp S, Simon R (2010) Ecogeography of ploidy variation in cultivated potato (Solanum Sect. Petota). Am J Bot 97:2049–2060.  https://doi.org/10.3732/ajb.1000277 CrossRefPubMedGoogle Scholar
  9. 9.
    Godwin ID, Aitken EA, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528.  https://doi.org/10.1002/elps.1150180906 CrossRefPubMedGoogle Scholar
  10. 10.
    Ghorbanzadeh Naghab M, Panahi B (2017) Molecular characterization of Iranian black cumin (Nigella sativa L.) accessions using RAPD marker. Biotechnologia 98:97–102.  https://doi.org/10.5114/bta.2017.68308 CrossRefGoogle Scholar
  11. 11.
    Mahmoudi B, Panahi B, Mohammadi SA, Daliri M, Babayev MS (2014) Microsatellite based phylogeny and bottleneck studies of Iranian indigenous goat populations. Anim Biotechnol 25:210–222.  https://doi.org/10.1080/10495398.2013.850431 CrossRefPubMedGoogle Scholar
  12. 12.
    Lauvergeat V, Barre P, Bonnet M, Ghesquiere M (2005) Sixty simple sequence repeat markers for use in the Festuca-Lolium complex of grasses. Mol Ecol Notes 5:401–405.  https://doi.org/10.1111/j.1471-8286.2005.00941.x CrossRefGoogle Scholar
  13. 13.
    Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Haixia L, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genom 12:1–13.  https://doi.org/10.1186/1471-2164-12-451 CrossRefGoogle Scholar
  14. 14.
    Fu YB, Peterson GW, Yu JK, Gao L, Jia J, Richards KW (2006) Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theor Appl Genet 112:1239–1247.  https://doi.org/10.1007/s00122-006-0225-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805.  https://doi.org/10.1007/s00122-004-1685-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71.  https://doi.org/10.1023/A:1026785207878 CrossRefGoogle Scholar
  17. 17.
    Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhoeur S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452CrossRefGoogle Scholar
  18. 18.
    Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717.  https://doi.org/10.1007/s00122-008-0931-z CrossRefPubMedGoogle Scholar
  19. 19.
    Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Houdeum vulgare L.) Hereditas 135:145–151.  https://doi.org/10.1007/s11032-008-9216-0 CrossRefPubMedGoogle Scholar
  20. 20.
    Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) Theor Appl Genet 106:411–422.  https://doi.org/10.1007/s00122-002-1031-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Malay C, Saha MC, John D, Cooper MA (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458.  https://doi.org/10.1007/s00122-006-0391-2 CrossRefGoogle Scholar
  22. 22.
    Amini F, Mirlohi AF, Majidi MM, Shojaiefar S, Kolliker R (2011) Improved polycross breeding of tall fescue through marker-based parental selection. Plant Breed 130:701–707.  https://doi.org/10.1111/j.1439-0523.2011.01884.x CrossRefGoogle Scholar
  23. 23.
    Sharifi-Tehrani M, Mardi M, Sahebi P, Catalán P, Díaz-Pérez A (2009) Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. Plant Syst Evol 282:57–70.  https://doi.org/10.1007/s00606-009-0207-3 CrossRefGoogle Scholar
  24. 24.
    Salehi M, Salehi H, Niazi A, Ghobadi C (2014) Convergence of goals: phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb). Mol Biotechnol 56:248–257.  https://doi.org/10.1007/s12033-013-9703-3 CrossRefPubMedGoogle Scholar
  25. 25.
    Panahi B, Afza R, Ghorbanzadeh Neghab M, Mahmoodnia M, Paymard B (2013) Relationship among AFLP, RAPD marker diversity and Agromorphological traits in safflower (Carthamus tinctorius L.) Prog Mol Biol Transl Sci 3:90–99.  https://doi.org/10.22059/PBS.2013.32098 CrossRefGoogle Scholar
  26. 26.
    Panahi B, Ghorbanzadeh Naghab M (2013) Genetic characterization of Iranian safflower (Carthamus tinctorius) using inter simple sequence repeats (ISSR) markers. Physiol Mol Biol Plants 19:239–243.  https://doi.org/10.1007/s12298-012-0155-1 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nie ZN, Chapman DF, Tharmaraj J, Clements R (2004) Effects of pasture species mixture, management, and environment on the productivity and persistence of dairy pastures in south-west Victoria. 2. Plant population density and persistence. Aust J Agric Res 55:637–643.  https://doi.org/10.1071/AR03175 CrossRefGoogle Scholar
  28. 28.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  29. 29.
    Malay MC, Mian MAR, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110:323–336.  https://doi.org/10.1007/s00122-004-1843-1 CrossRefGoogle Scholar
  30. 30.
    Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of genetic linkage map. Theor Appl Genet 102:206–214.  https://doi.org/10.1007/s001220051637 CrossRefGoogle Scholar
  31. 31.
    Rohlf J (2012) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.2, vol 22. Exeter Software, Setauket, New York, pp 14–26.  https://doi.org/10.2307/2684761 CrossRefGoogle Scholar
  32. 32.
    Roldan-Ruiz I, Dendauw J, Vanbockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp). Mol Breed 6:125–134.  https://doi.org/10.1023/A:1009680614564 CrossRefGoogle Scholar
  33. 33.
    Pritchard-Novembre J (2016) Pritchard, Stephens, and Donnelly on population structure. Genetics 204:391–393.  https://doi.org/10.1534/genetics.116.195164 CrossRefGoogle Scholar
  34. 34.
    Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 5:1–9.  https://doi.org/10.1186/1471-2156-5-1 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dangi RS, Lagu MD, Choudhary LB, Ranjekar PK, Gupta VS (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol 4:1–11.  https://doi.org/10.1186/1471-2229-4-13 CrossRefGoogle Scholar
  36. 36.
    Sehgal D, Rajpal VR, Raina SN, Sasanuma T, Sasakuma T (2009) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135:457–470.  https://doi.org/10.1007/s10709-008-9292-4 CrossRefPubMedGoogle Scholar
  37. 37.
    Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114:359–372.  https://doi.org/10.1007/s00122-006-0440-x CrossRefPubMedGoogle Scholar
  38. 38.
    Borna F, Luo S, Ahmad NM, Nazeri V, Shokrpour M, Trethowan R (2017) Genetic diversity in populations of the medicinal plant Leonurus cardiaca L. revealed by inter-primer binding site (iPBS) markers. Genet Resour Crop Evol 3:479–492.  https://doi.org/10.1007/s10722-016-0373-4 CrossRefGoogle Scholar
  39. 39.
    Pivoriene O, Pasakinskiene I, Brazauskas G, Lideikyte L, Jenen LB, Lubberstedt T (2008) Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass. Agronomy 54:17–21.  https://doi.org/10.2478/v10054-008-0004-x CrossRefGoogle Scholar
  40. 40.
    Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215.  https://doi.org/10.1007/BF02772892 CrossRefGoogle Scholar
  41. 41.
    Wang ML, Barkley NA, Jenkins TM (2009) Microsatellite markers in plants and insects. Part I. Applications of biotechnology. Genes Genomes Genom 3:54–67Google Scholar
  42. 42.
    Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet 109:1687–1693.  https://doi.org/10.1007/s00122-004-1797-3 CrossRefPubMedGoogle Scholar
  43. 43.
    Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744.  https://doi.org/10.1007/s00122-003-1301-5 CrossRefPubMedGoogle Scholar
  44. 44.
    Dreisigacker S, Zhang P, Warburton ML, Skovmand D, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661.  https://doi.org/10.2135/cropsci2005.0653 CrossRefGoogle Scholar
  45. 45.
    Kolliker R, Herrmann D, Boller B, Widmer F (2003) Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.) Theor Appl Genet 107:306–315.  https://doi.org/10.1007/s00122-003-1248-6 CrossRefPubMedGoogle Scholar
  46. 46.
    Semagn K, Bjørnstad A, Ndjiondjop MN (2006) Review an overview of molecular marker methods for plants. Afr J Plant Sci Biotechnol 25:2540–2568Google Scholar
  47. 47.
    Ekenel HK, Sankur B (2004) Feature selection in the independent component subspace for face recognition. Pattern Recognit Lett 25:1377–1388.  https://doi.org/10.1016/j.patrec.2004.05.013 CrossRefGoogle Scholar
  48. 48.
    Zhang J, Wu D, Wang C, Qu H, Zou X, Yang C (2007) Genetic diversity analysis of Quercus mongolica populations with inter-simple sequence repeats (ISSR). JBES Sci 15:292–299Google Scholar
  49. 49.
    Lal RK, Gupta P, Sarkar S (2018) Phylogenetic relationships, path and principal component analysis for genetic variability and high oil yielding clone selection in Vetiver (Vetiveria zizanioides L.) Nash. J Plant Genet Breed 2:1–8Google Scholar
  50. 50.
    Nagaoka T, Ogihara Y (1997) Applicability of intersimple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602.  https://doi.org/10.1007/s001220050456 CrossRefGoogle Scholar
  51. 51.
    Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Sci 41:1565–1572.  https://doi.org/10.2135/cropsci2001.4151565x CrossRefGoogle Scholar
  52. 52.
    Madesi P, Abraham EM, Kalivas A, Ganopoulos Ι, Tsaftaris A (2014) Genetic diversity and structure of natural Dactylis glomerata L. populations revealed by morphological and microsatellite-based (SSR/ISSR) markers. Genet Mol Res 13:4226–4240.  https://doi.org/10.4238/2014.June.9.8 CrossRefGoogle Scholar
  53. 53.
    Hand ML, Cogan NOI, Forster JW (2012) Molecular characterization and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.) Theor Appl Genet 124:1127–1137.  https://doi.org/10.1007/s00122-011-1774-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Plant Breeding and Biotechnology, Faculty of AgricultureUrmia UniversityUrmiaIran
  2. 2.Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO)TabrizIran

Personalised recommendations