Construction of a Pichia pastoris strain efficiently producing recombinant human granulocyte-colony stimulating factor (rhG-CSF) and study of its biological activity on bone marrow cells

  • M. B. Pykhtina
  • V. P. Romanov
  • S. M. Miroshnichenko
  • A. B. BeklemishevEmail author
Original Article


Non-glycosylated, recombinant human granulocyte colony-stimulating factor (rhG-CSF), produced by Escherichia coli (filgrastim, leukostim) is widely used to treat a number of serious human diseases and aids in the recovery post bone marrow transplantation. Although glycosylation is not required for the manifestation of the biological activity of G-CSF, a number of studies have shown that the carbohydrate residue significantly increases the physicochemical stability of the G-CSF molecule. Therefore, the aim of the present study was to design a Pichia pastoris strain capable of producing glycosylated rhG-CSF, and to study its effects on rat bone marrow cells. The nucleotide sequence of the rhG-CSF gene has been optimized for expression in P. pastoris, synthesized, cloned into the pPICZαA vector and expressed under the control of the AOX promoter in P. pastoris X33. One of the selected clones secreting rhG-CSF, produced 100–120 mg/l of rhG-CSF three days post-induction with methanol. The recombinant cytokine was purified using two-step, ion-exchange chromatography. The final yield of purified G-CSF was 35 mg/L of culture medium. The biological activity of rhG-CSF was examined in rat bone marrow cells. The P. pastoris strain was designed to produce relatively high levels of rhG-CSF. The rhG-CSF protein had a strong stimulating effect on the growth of rat bone marrow cells, which was comparable to that of the commercial drug leukostim, but showed a more persistent effect on granulocyte cells and monocyte sprouts, enabling the enhanced maintenance of the viability of the cells into the 4th day of incubation.


Recombinant human G-CSF Pichia pastoris X33 Bioactivity Bone marrow Flow cytofluorimetry Myelogram 



  1. 1.
    Nicola NA, Metcalf D, Matsumoto M, Johnson GR (1983) Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. Journal of Biological Chemistry 258(14):9017–9023PubMedGoogle Scholar
  2. 2.
    Tsai ST, Chu SC, Liu SH, Pang CY, Hou TW, Lin SZ, Chen SY (2017) Neuroprotection of Granulocyte Colony-Stimulating Factor for Early Stage Parkinson’s Disease. Cell Transplantation 26(3):409–416PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Prakash A, Medhi B, Chopra K (2013) Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-β induced experimental model of Alzheimer’s disease. Pharmacology Biochemistry and Behavior 110:46–57CrossRefGoogle Scholar
  4. 4.
    Lu C-Z, Xiao B-G (2006) G-CSF and neuroprotection: a therapeutic perspective in cerebral ischaemia. Biochemical society transactions 34(6):1327–1333PubMedCrossRefGoogle Scholar
  5. 5.
    Takano H, Qin Y, Hasegawa H, Ueda K, Niitsuma Y, Ohtsuka M, Komuro I (2006) Effects of G-CSF on left ventricular remodeling and heart failure after acute myocardial infarction. Journal of molecular medicine (Berlin, Germany) 84(3):185–193CrossRefGoogle Scholar
  6. 6.
    Smith MA, Smith JG (2002) Clinical experience with the use of rhG-CSF in secondary autoimmune neutropenia. Clinical & Laboratory Haematology 24(2):93–97CrossRefGoogle Scholar
  7. 7.
    Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G (1996) Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88(6):1907–1929PubMedCrossRefGoogle Scholar
  8. 8.
    Ono M (1994) Physicochemical and biochemical characteristics of glycosylated recombinant human granulocyte colony-stimulating factor (lenograstim). European Journal of Cancer 30A(3):7–11Google Scholar
  9. 9.
    Oh-eda M, Hasegawa M, Hattori К, Kuboniwa H, Kojima T, Orita T, Tomonou K, Yamazaki T, Ochi N (1990) O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. Journal of BiologicalChemistry 265(20):11432–11435Google Scholar
  10. 10.
    Ono M, Oh-eda M, Kamachi S, Kato M, Endo Y, Ochi N (1992) Structure of G-CSF: significance of the sugar chain. Journal of Nutritional Science and Vitaminology 38:337–340CrossRefGoogle Scholar
  11. 11.
    Carter CR, Whitmore KM, Thorpe R (2004) The significance of carbohydrates on G-CSF: differential sensitivity of G-CSFs to human neutrophil elastase degradation. Journal of Leukocyte Biology 75(3):515–522PubMedCrossRefGoogle Scholar
  12. 12.
    Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11(8):905–910PubMedGoogle Scholar
  13. 13.
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews 24(1):45–66PubMedCrossRefGoogle Scholar
  14. 14.
    Lund AH, Duch M, Pedersen FS (1996) Increased cloning efficiency by temperature-cycle ligation. NucleicAcidsResearch 24(4):800–801Google Scholar
  15. 15.
    Bae CS, Yang DS, Lee J, Park Y-H (1999) Improved process for production of recombinant yeast-derived monomeric human G-CSF. Applied Microbiology and Biotechnology 52(3):338–344PubMedCrossRefGoogle Scholar
  16. 16.
    Bahrami A, Shojaosadati SA, Khalilzadeh R, Mohammadian J, Farahani EV, Masoumian MR (2009) Prevention of human granulocyte colony-stimulating factor protein aggregation in recombinant Pichia pastoris fed-batch fermentation using additives. Biotechnology and Applied Biochemistry 52(2):141–148PubMedCrossRefGoogle Scholar
  17. 17.
    Apte-Deshpande A, Somani S, Mandal G, Soorapaneni S, Padmanabhan S (2009) Over expression and analysis of O-glycosylated recombinant human granulocyte colony stimulating factor in Pichia pastoris using Agilent 2100 Bioanalyzer. Journal of Biotechnology 143(1):44–50PubMedCrossRefGoogle Scholar
  18. 18.
    Li R, Xie C, Zhang Y, Li B, Donelan W, Li S, Han S, Wang X, Cui T, Tang D (2014) Expression of recombinant human IL-4 in Pichia pastoris and relationship between its glycosylation and biological activity. Protein Expression and Purification 96:1–7PubMedCrossRefGoogle Scholar
  19. 19.
    Zhu W, Gong G, Pan J, Han S, Zhang W, Hu Y, Xie L (2018) High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expression and Purification 147:61–68PubMedCrossRefGoogle Scholar
  20. 20.
    Maity N, Thawani A, Sharma A, Gautam A, Mishra S, Sahai V (2016) Expression and control of codon-optimized granulocyte colony-stimulating factor in Pichia pastoris. Applied Biochemistry and Biotechnology 178(1):159–172PubMedCrossRefGoogle Scholar
  21. 21.
    Lasnik MA, Porekar VG, Stalc A (2001) Human granulocyte colony stimulating factor (hG-CSF) expressed by methylotrophic yeast pichia pastoris. PflügersArchiv European Journal of Physiology 442(6 Suppl. 1):R184–R186PubMedCrossRefGoogle Scholar
  22. 22.
    Saeedinia A, Shamsara M, Bahrami A, Zeinoddini M, Naseeri-Khalili MA, Mohammadi R, Sabet NM, Sami H (2008) Heterologous expression of human GCSF in Pichia pastoris. Biotechnology 7(3):569–573CrossRefGoogle Scholar
  23. 23.
    Kateja N, Agarwal H, Hebbi V, Rathore AS (2017) Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study. Biotechnology Progress 33(4):998–1009PubMedCrossRefGoogle Scholar
  24. 24.
    Querol S, Cancelas JA, Amat L, Capmany G, Garcia J (1999) Effect of glycosylation of recombinant human granulocytic colony-stimulating factor on expansion cultures of umbilical cord blood CD34+ cells. Haematologica 84(6):493–498PubMedGoogle Scholar
  25. 25.
    Nissen C, dalle Carbonare Y, Moser Y (1994) In vitro comparison of the biological potency of glycosylated versus non-glycosylated rG-CSF. Drug Investigation 7(6):346–352CrossRefGoogle Scholar
  26. 26.
    Pedrazzoli P, Gibelli N, Pavesi L, Preti P, Piolini M, Bertolini F, Robustellidella Cuna G (1996) Effects of glycosylated and non-glycosylated G-CSFs, alone and in combination with other cytokines, on the growth of human progenitor cells. AnticancerResearch 16(4A):1781–1785Google Scholar
  27. 27.
    Ria R, Gasparre T, Mangialardi G, Bruno A, Iodice G, Vacca A, Dammacco F (2010) Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs. Bone Marrow Transplantation 45(2):277–281PubMedCrossRefGoogle Scholar
  28. 28.
    Ribeiro D, Veldwijk MR, Benner A, Laufs S, Wenz F, Ho AD, Fruehauf S (2007) Differences in functional activity and antigen expression of granulocytes primed in vivo with filgrastim, lenograstim, or pegfilgrastim. Transfusion 47(6):969–980PubMedCrossRefGoogle Scholar
  29. 29.
    Ataergin S, Arpaci F, Turan M, Solchaga L, Cetin T, Ozturk M, Ozet A, Komurcu S, Ozturk B (2008) Reduced dose of lenograstim is as efficacious asstandard dose of filgrastim for peripheral blood stem cell mobilization and transplantation: a randomized study in patients undergoing autologous peripheral stem cell transplantation. American Journal of Hematology 83(8):644–648PubMedCrossRefGoogle Scholar
  30. 30.
    Hüttmann A, Schirsafi K, Seeber S, Bojko P (2005) Comparison of lenograstim and filgrastim: effects on blood cell recovery after high-dose chemotherapy and autologous peripheral blood stem cell transplantation. Journal of Cancer Research and Clinical Oncology 131(3):152–156PubMedCrossRefGoogle Scholar
  31. 31.
    de Arriba F, Lozano ML, Ortuño F, Heras I, Moraleda JM, Vicente V (1997) Prospective randomized study comparing the efficacy of bioequivalent doses of glycosylated and nonglycosylatedrG-CSF for mobilizing peripheral blood progenitor cells. British Journal of Haematology 96(2):418–420PubMedCrossRefGoogle Scholar
  32. 32.
    Höglund M, Smedmyr B, Bengtsson M, Tötterman TH, Cour-Chabernaud V, Yver A, Simonsson B (1997) Mobilization of CD34+ cells by glycosylated and nonglycosylated G-CSF in healthy volunteers – a comparative study. European Journal of Haematology 59(3):177–183PubMedCrossRefGoogle Scholar
  33. 33.
    Kopf B, De Giorgi U, Vertogen B, Monti G, Molinari A, Turci D, Dazzi C, Leoni M, Tienghi A, Cariello A, Argnani M, Frassineti L, Scarpi E, Rosti G, Marangolo M (2006) A randomized study comparing filgrastim versus lenograstim versus molgramostim plus chemotherapy for peripheral blood progenitor cell mobilization. Bone Marrow Transplantation 38(6):407–412PubMedCrossRefGoogle Scholar
  34. 34.
    Bönig H, Silbermann S, Weller S, Kirschke R, Körholz D, Janssen G, Göbel U, Nürnberger W (2001) Glycosylated vs non-glycosylated granulocyte colony-stimulating factor (G-CSF) – results of a prospective randomisedmonocentre study. Bone Marrow Transplantation 28(3):259–264PubMedCrossRefGoogle Scholar
  35. 35.
    Martino M, Console G, Irrera G, Callea I, Condemi A, Dattola A, Messina G, Pontari A, Pucci G, Furlò G, Bresolin G, Iacopino P, Morabito F (2005) Harvesting peripheral blood progenitor cells from healthy donors: retrospective comparison of filgrastim and lenograstim. Journal of Clinical Apheresis 20(3):129–136PubMedCrossRefGoogle Scholar
  36. 36.
    Lefrère F, Bernard M, Audat F, Cavazzana-Calvo M, Belanger C, Hermine O, Arnulf B, Buzyn A, Varet B (1999) Comparison of lenograstim vs filgrastim administration following chemotherapy for peripheral blood stem cell (PBSC) collection: a retrospective study of 126 patients. Leukemia & Lymphoma 35(5–6):501–505CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of BiochemistryFRC FTMNovosibirskRussian Federation
  2. 2.Institute of Clinical and Experimental Lymphology—Branch of the ICG SB RASNovosibirskRussian Federation

Personalised recommendations