Advertisement

Isolation and characterization of 13 microsatellite loci for the Neotropical otter, Lontra longicaudis, by next generation sequencing

  • María Camila Latorre-CardenasEmail author
  • Carla Gutiérrez-Rodríguez
  • Stacey L. Lance
Short Communication

Abstract

The Neotropical otter, Lontra longicaudis, is an ecologically important species for freshwater ecosystems that is threatened due to habitat destruction and hunting. However, there is limited information regarding the population sizes, genetic diversity, genetic structure and gene flow of the species, which is crucial for the elaboration of conservation plans. The aim of this study was to isolate and characterize microsatellites for L. longicaudis, using Illumina paired-end-sequencing. Initial amplification tests were performed in 48 loci, out of which, 13 yielded high-quality PCR products and thus were further evaluated. Genetic diversity and discrimination power of the 13 microsatellite loci was assessed using 19 non-invasive samples collected in the Jamapa basin in Veracruz, Mexico and blood samples from six captive individuals. All loci were polymorphic, the number of alleles per locus ranged from 4 to 10, the observed heterozygosity from 0.21 to 0.69, and the expected heterozygosity from 0.55 to 0.82. The combined set of 13 microsatellites showed a high power for discriminating among individuals (probability of identity PID = 1.551 × 10−16) and among siblings (probability of identity of siblings PIDSIB = 3.349 × 10−06). A combination of nine loci are sufficient to discriminate among siblings with high confidence (PIDSIB < 0.0001). The new set of microsatellites for the Neotropical otter reported here will provide a useful genetic tool to assess population genetic patterns and ecological parameters of the species.

Keywords

Discrimination power Genetic diversity Lontra longicaudis Microsatellites Freshwater ecosystems 

Notes

Acknowledgements

This work was partially supported by the National Geographic Society Early Career Grant (# WW-185ER-17), by research funds from the Instituto de Ecología, A.C. (20012-11-080) and by the U. S. Department of Energy under Award Number DOE #DE-EM0004391 to the University of Georgia Research Foundation. María Camila Latorre-Cárdenas was supported by a Doctoral scholarship (#414864) from the Consejo Nacional de Ciencia y Tecnología (CONACyT). The “Acuario de Veracruz, A.C.” donated blood from six individuals. Pablo C. Hernández-Romero, Tarcisio Solis and Luz Magali Sánchez Méndez provided field assistance; and Luz Magali Sánchez Méndez, Denisse Maldonado Sánchez and Cristina Bárcenas laboratory assistance.

Compliance with ethical standards

Conflict of interest

All authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11033_2019_5165_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Ramos-Rosas NN, Valdespino C, García-Hernández J et al (2013) Heavy metals in the habitat and throughout the food chain of the Neotropical otter, Lontra longicaudis, in protected Mexican wetlands. Environ Monit Assess 185:1163–1173.  https://doi.org/10.1007/s10661-012-2623-z CrossRefPubMedGoogle Scholar
  2. 2.
    Rheingantz, ML & Trinca, CS (2015) Lontra longicaudis. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/species/12304/21937379. Accessed 18 Oct 2018
  3. 3.
    Rheingantz ML, Santiago-Plata VM, Trinca CS (2017) The Neotropical otter Lontra longicaudis: a comprehensive update on the current knowledge and conservation status of this semiaquatic carnivore. Mamm Rev 47:291–305.  https://doi.org/10.1111/mam.12098 CrossRefGoogle Scholar
  4. 4.
    Mumma MA, Zieminski C, Fuller TK, Mahoney SP, Waits LP (2015) Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance. Mol Ecol Resour 15:1133–1144.  https://doi.org/10.1111/1755-0998.12390 CrossRefPubMedGoogle Scholar
  5. 5.
    Ferreira CM, Sabino-Marques H, Barbosa S (2018) Genetic non-invasive sampling (GNIS) as a cost-effective tool for monitoring elusive small mammals. Eur J Wildl Res.  https://doi.org/10.1007/s10344-018-1188-8 CrossRefGoogle Scholar
  6. 6.
    Biffi D, Williams DA (2017) Use of non-invasive techniques to determine population size of the marine otter in two regions of Peru. Mamm Biol 84:12–19CrossRefGoogle Scholar
  7. 7.
    Janečka JE, Munkhtsog B, Jackson RM (2011) Comparison of non-invasive genetic and camera-trapping techniques for surveying snow leopards. J Mamm 92:771–783.  https://doi.org/10.1644/10-MAMM-A-036.1 CrossRefGoogle Scholar
  8. 8.
    Vieira MLC, Santini L, Diniz AL, de Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol.  https://doi.org/10.1590/1678-4685-GMB-2016-0027 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Patel A, Das P, Barat A, Meher PK, Jayasankar P (2010) Utility of cross-species amplification of 34 rohu microsatellite loci in Labeo bata, and their transferability in six other species of the cyprinidae family. Aquac Res 41:590–593CrossRefGoogle Scholar
  10. 10.
    Nair A, Gopalan SV, George S, Kumar KS, Merilä J (2012) Cross-species testing and utility of microsatellite loci in Indirana frogs. BMC Res Notes 5:389CrossRefGoogle Scholar
  11. 11.
    Queirós J, Godinho R, Lopes S et al (2014) Effect of microsatellite selection on individual and population genetic inferences: an empirical study using cross-specific and species-specific amplifications. Mol Ecol Resour.  https://doi.org/10.1111/1755-0998.12349 CrossRefPubMedGoogle Scholar
  12. 12.
    Väli U, Einarsson A, Waits L, Ellegren H (2008) To what extent do micro- satellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol 17:3808–3817CrossRefGoogle Scholar
  13. 13.
    O’Bryhim J, Somers C, Lance SL et al (2013) Development and characterization of twenty-two novel microsatellite markers for the mountain whitefish, Prosopium williamsoni and cross-amplification in the round whitefish, P. cylindraceum, using paired-end Illumina shotgun sequencing. Conserv Genet Resour 5:89–91.  https://doi.org/10.1007/s12686-012-9740-4 CrossRefGoogle Scholar
  14. 14.
    Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ (2012) Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE 7(2):e30953.  https://doi.org/10.1371/journal.pone.0030953 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40(15):e115CrossRefGoogle Scholar
  16. 16.
    Taberlet P, Griffin S, Goossens B, Questiau S et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194CrossRefGoogle Scholar
  17. 17.
    Valiere N (2002) GIMLET: a computer program for analyzing genetic individual identification data. Mol Ecol Notes 10:1–4Google Scholar
  18. 18.
    Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev 6:847–859CrossRefGoogle Scholar
  19. 19.
    van Oosterhout C, Hutchinson WF, Willis DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  20. 20.
    Galpern P, Manseau M, Hettinga P, Smith K, Wilson P (2012) Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 12:771–778.  https://doi.org/10.1111/j.1755-0998.2012.03137.x CrossRefPubMedGoogle Scholar
  21. 21.
    Goudet, J., 2001. FSTAT, A program to estimate and test gene diversities and fixation indices (Version 2.9.3)Google Scholar
  22. 22.
    Waits L, Taberlet P, Luikart G (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CrossRefGoogle Scholar
  23. 23.
    Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655.  https://doi.org/10.1046/j.1365-294x.1998.00374.x CrossRefPubMedGoogle Scholar
  24. 24.
    Trigila AP, Gómez JJ, Cassini MH, Túnez JI (2016) Genetic diversity in the Neotropical river otter, Lontra longicaudis (Mammalia, Mustelidae), in the Lower Delta of Parana River, Argentina and its relation with habitat suitability. Hydrobiologia 768:287–298CrossRefGoogle Scholar
  25. 25.
    Trinca CS, Jaeger CF, Eizirik E (2013) Molecular ecology of the Neotropical otter (Lontra longicaudis): non-invasive sampling yields insights into local population dynamics. Biol J Linnean Soc 109:932–948CrossRefGoogle Scholar
  26. 26.
    Ortega J, Navarrete D, Maldonado JE (2012) Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico. Anim Biodivers Conserv 35:59–69Google Scholar
  27. 27.
    Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631.  https://doi.org/10.1093/molbev/msl191 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Red de Biología Evolutiva, Instituto de Ecología A.CXalapaMéxico
  2. 2.Posgrado Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  3. 3.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenUSA

Personalised recommendations