Association between vitamin D receptor (FokI) genetic variant rs2228570 and iron profile in hemodialysis patients

  • Osama S. Al-shaer
  • Eman G. BehiryEmail author
  • Abdelmoneam A. Ahmed
  • Hyam H. Moustafa
Original Article


Iron deficiency is a common etiology of anemia that causes suboptimal response to erythropoietin therapy in hemodialysis (HD) patients. This study investigated the association between vitamin D receptor (VDR) genetic variant (FokI) rs2228570 with iron indices (serum iron, transferrin, transferrin saturation, and ferritin). Sixty adequately hemodialyzed patients subdivided into two groups; 31 patients with transferrin saturation (TSAT) < 20% and 29 with TSAT > 20% who received I.V sodium ferric gluconate, calcium, and vitamin D. Sixty normal healthy were selected as the control group.. VDR genetic variant (SNP rs2228570) was genotyped in all subjects using PCR/RFLP. HD patients showed a higher frequency of rs2228570 FF genotype (38.3%) than controls (31.7%). The frequency of ff genotype and f allele in patients (8.4 and 35% respectively) were significantly lower than controls (25 and 46.7% respectively). Allele model (f vs. F): OR 0.721, 95% CI 0.521–0.998, P = 0.049. While (ff vs. FF): OR 0.452, 95% CI 0.223–0.917, P = 0.028. The distribution of Ff + ff genotypes in HD cases with TSAT > 20% was higher than in HD cases with TSAT < 20%, Dominant model (Ff +ff vs FF): OR 2.753, 95% CI 1.902–3.409, P = 0.048. f allele showed lower frequency in low TSAT group than high TSAT group (27.4 vs. 43.1%) with significant P value (P = 0.042) with allele model (f vs. F): OR 2.012, 95% CI 1.923–4.226, P = 0.042. Fok-1 ff, Ff + ff genotypes were significantly associated with TSAT > 20% with a protective effect against low TSAT in HD patients.


Hemodialysis RFLP Fok 


Compliance with ethical standards

Conflict of interest

The authors have no disclosures to report.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Hotchkiss JR, Palevsky PM (2012) Care of the critically ill patient with advanced chronic kidney disease or end-stage renal disease. Curr Opin Crit Care 18(6):599–606CrossRefGoogle Scholar
  2. 2.
    Santoro D, Buemi M, Gagliostro G, Vecchio M, Currò M, Ientile R, Caccamo D (2015) Association of VDR gene polymorphisms with heart disease in chronic kidney disease patients. Clin Biochem 48(16–17):1028–1032CrossRefGoogle Scholar
  3. 3.
    Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80(12):1258–1270CrossRefGoogle Scholar
  4. 4.
    Locatelli F, Andrulli S, Memoli B, Maffei C, Del Vecchio L, Aterini S, De Simone W, Mandalari A, Brunori G, Amato M, Cianciaruso B (2005) Nutritional-inflammation status and resistance to erythropoietin therapy in haemodialysis patients. Nephrol Dial Transplant 21(4):991–998CrossRefGoogle Scholar
  5. 5.
    Cikrikcioglu MA, Karatoprak C, Cakirca M, Kiskac M, Zorlu M, Cetin G, Yildiz K, Erkoc R, Alay M, Erkal S, Erkal SN (2013) Association of calcium channel blocker use with lower hemoglobin levels in chronic kidney disease. Eur Rev Med Pharmacol Sci 17(16):2530–2537PubMedGoogle Scholar
  6. 6.
    Goodnough LT, Nemeth E, Ganz T (2010) Detection, evaluation, and management of iron-restricted erythropoiesis. Blood 116:4754–4761CrossRefGoogle Scholar
  7. 7.
    Hamano T, Fujii N, Hayashi T, Yamamoto H, Iseki K, Tsubakihara Y (2015) Thresholds of iron markers for iron deficiency erythropoiesis-finding of the Japanese nationwide dialysis registry. Kidney Int Suppl 5(1):23–32CrossRefGoogle Scholar
  8. 8.
    Girelli D, Busti F (2019) Anemia and adverse outcomes in the elderly: a detrimental inflammatory loop? Haematologica 104(3):417–419CrossRefGoogle Scholar
  9. 9.
    Whitfield GK, Remus LS, Jurutka PW, Zitzer H, Oza AK, Dang HT, Haussler CA, Galligan MA, Thatcher ML, Dominguez CE, Haussler MR (2001) Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 177(1–2):145–159CrossRefGoogle Scholar
  10. 10.
    Idänpään-Heikkilä JE (2001) Ethical principles for the guidance of physicians in medical research: the Declaration of Helsinki. Bull World Health Organ 79(4):279PubMedPubMedCentralGoogle Scholar
  11. 11.
    Brunelli S (2017) The dialysis prescription, in handbook of dialysis therapy (5th ed). Elseveir, AmsterdamGoogle Scholar
  12. 12.
    Mathew TH, Johnson DW, Jones GR (2007) Chronic kidney disease and automatic reporting of estimated glomerular filtration rate: revised recommendations. Med J Aust 187(8):459–463CrossRefGoogle Scholar
  13. 13.
    Lüdemann L, Grieger W, Wurm R, Wust P, Zimmer C (2006) Glioma assessment using quantitative blood volume maps generated by T1-weighted dynamic contrast-enhanced magnetic resonance imaging: a receiver operating characteristic study. Acta Radiol 47(3):303–310CrossRefGoogle Scholar
  14. 14.
    Kulah E, Dursun A, Acikgoz S, Can M, Kargi S, Ilikhan S, Bozdogan S (2006) The relationship of target organ damage and 24-hour ambulatory blood pressure monitoring with vitamin D receptor gene fok-I polymorphism in essential hypertension. Kidney Blood Press Res 29(6):344–350CrossRefGoogle Scholar
  15. 15.
    Agarwal R, Acharya M, Tian JI, Hippensteel RL, Melnick JZ, Qiu P, Williams L, Batlle D (2005) Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int 68(6):2823–2828CrossRefGoogle Scholar
  16. 16.
    Amato M, Pacini S, Aterini S, Punzi T, Gulisano M, Ruggiero M (2008) Iron indices and vitamin D receptor polymorphisms in hemodialysis patients. Adv Chronic Kidney Dis 15(2):186–190CrossRefGoogle Scholar
  17. 17.
    Gago EV, Cadarso-Suarez C, Perez-Fernandez R, Burgos RR, Mugica JD, Iglesias CS (2005) Association between vitamin D receptor Fokl polymorphism and serum parathyroid hormone level in patients with chronic renal failure. J Endocrinol Invest 28(4):117–121CrossRefGoogle Scholar
  18. 18.
    El-Attar HA, Mokhtar MM, Gaber EW. Profile of vitamin D receptor polymorphism Bsm I and FokI in end stage renal disease Egyptian patients on maintenance hemodialysisGoogle Scholar
  19. 19.
    Tripathi G, Sharma R, Sharma RK, Gupta SK, Sankhwar SN, Agrawal S (2010) Vitamin D receptor genetic variants among patients with end-stage renal disease. Ren Fail 32(8):969–977CrossRefGoogle Scholar
  20. 20.
    Abouzid M, Karazniewicz-Lada M, Glowka F (2018) Genetic determinants of vitamin D-related disorders; focus on vitamin D receptor. Curr Drug Metab 19(12):1042–1052CrossRefGoogle Scholar
  21. 21.
    Li L, Wan Q, Yang S, Zhao S (2018) Impact of vitamin D receptor gene polymorphism on chronic renal failure susceptibility. Ther Apheresis Dial 22(6):575–587CrossRefGoogle Scholar
  22. 22.
    Marco MP, Craver L, Betriu A, Fibla J, Fernández E (2001) Influence of vitamin D receptor gene polymorphisms on mortality risk in hemodialysis patients. Am J Kidney Dis 38(5):965–974CrossRefGoogle Scholar
  23. 23.
    Ghorbanihaghjo A, Argani H, Samadi N, Valizadeh S, Halajzadeh J, Yousefi B, Rashtchizadeh N (2014) Relationship between vitamin D receptor gene FokI and ApaI polymorphisms and serum levels of fetuin-A, vitamin D, and parathyroid hormone in patients on hemodialysis. Iran J Kidney Dis 8(5):394PubMedGoogle Scholar
  24. 24.
    Grzegorzewska AE, Ostromecki G, Zielińska P, Mostowska A, Niemir Z, Polcyn-Adamczak M, Pawlik M, Sowińska A, Jagodziński PP (2015) Association of retinoid X receptor alpha gene olymorphism with clinical course of chronic glomerulonephritis. Med Sci Monit 21:3671CrossRefGoogle Scholar
  25. 25.
    Küçüksu M, Cetinkaya R, Özdemir FA, Sarıkaya M, Sarı F, Gozel N (2019) Effect of vitamin D receptor fokI gene polymorphism on chronic renal disease. Progr Nutr. CrossRefGoogle Scholar
  26. 26.
    Zhou TB, Jiang ZP, Huang MF, Su N (2015) Association of vitamin D receptor Fok1 (rs2228570), TaqI (rs731236) and ApaI (rs7975232) gene polymorphism with the risk of chronic kidney disease. J Recept Signal Transduct 35(1):58–62CrossRefGoogle Scholar
  27. 27.
    Sezer S, Tutal E, Bilgic A, Ozdemir FN, Haberal M (2007) Possible influence of vitamin D receptor gene polymorphisms on recombinant human erythropoietin requirements in dialysis patients. Transplant Proc 39:40–44CrossRefGoogle Scholar
  28. 28.
    Levin A, Li YC (2005) Vitamin D and its analogues: do they protect against cardiovascular disease in patients with kidney disease? Kidney Int 68(5):1973–1981CrossRefGoogle Scholar
  29. 29.
    Pupim LB, Caglar K, Hakim RM, Shyr YU, Ikizler TA (2004) Uremic malnutrition is a predictor of death independent of inflammatory status. Kidney Int 66(5):2054–2060CrossRefGoogle Scholar
  30. 30.
    Gross C, Krishnan AV, Malloy PJ, Eccleshall TR, Zhao XY, Feldman D (1998) The vitamin D receptor gene start codon polymorphism: a functional analysis of FokI variants. J Bone Miner Res 13(11):1691–1699CrossRefGoogle Scholar
  31. 31.
    Arai H, Miyamoto KI, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 12(6):915–921CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Osama S. Al-shaer
    • 1
  • Eman G. Behiry
    • 1
    Email author
  • Abdelmoneam A. Ahmed
    • 2
  • Hyam H. Moustafa
    • 3
  1. 1.Clinical and Chemical Pathology Department, Benha Faculty of MedicineBenha UniversityBenhaEgypt
  2. 2.Internal Medicine Department, Benha Faculty of MedicineBenha UniversityBenhaEgypt
  3. 3.M.B.BCH, Faculty of MedicineBenha UniversityBenhaEgypt

Personalised recommendations