Advertisement

A combination of Citrus reticulata peel and black tea inhibits migration and invasion of liver cancer via PI3K/AKT and MMPs signaling pathway

  • Shuai Wen
  • Lingli Sun
  • Ran An
  • Wenji Zhang
  • Limin Xiang
  • Qiuhua Li
  • Xingfei Lai
  • Mengen Huo
  • Dongli LiEmail author
  • Shili SunEmail author
Original Article
  • 55 Downloads

Abstract

Liver cancer, one of the most common malignancies, is the second leading cause of cancer death in the world. The citrus reticulate peel and black tea have been studied for their beneficial health effects. In spite of the many studies have been reported, the underlying molecular mechanisms underlying its health benefits are still not fully understood. In present study, we developed a unique citrus reticulate peel black tea (CRPBT) by combined citrus reticulate peel and black tea and assessed its active ingredients, anti-oxidant and anti-liver cancer effects in vitro. The results suggested that CRPBT exhibited antioxidant capacity and effectively inhibited proliferation and migration of liver cancer cells in a dose- and time- dependent manner. Mechanistically, CRPBT significantly down-regulated phosphorylation of PI3K and AKT, and up-regulated the ratio of Bax/Bcl-2, and suppressed the expression of MMP2/9, N-cadherin and Vimetin proteins in liver cancer cells. Taken together, CRPBT has good effect on inhibiting migration, invasion, proliferation, and inducing apoptosis in liver cancer cells.

Keywords

Citrus reticulate peel black tea Liver cancer Migration Invasion Signaling pathway 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81803236, 31800295, 81903319). Guangdong Science and Technology program (Nos. 2017A070702004, 2016B090918118, 2017A020224015, 2018KJYZ002), Natural Science Foundation of Guangdong Province (Nos. 2017A030310504 and 2016A030313006), ShaoGuan Science and Technology Program (No. 2018CS11902), Science and Technology Board of Yingde (NO. JHXM2018029), the Foundation for Department of Education of Guangdong Province (Nos. 2016KCXTD005 and 2017KSYS010), the Youth Foundation of Wuyi University (No. 2017td01), the President Foundation of Guangdong Academy of Agricultural Sciences (Nos. 201534 and 201720).

Author contributions

SS and DL conceived and designed the experiments. SW performed the experiments. SW and LS analyzed the data. LX, WZ, XL, QL, RA and MH contributed reagents. SW wrote the paper, and LS and SS critically revised the manuscript. All authors approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11033_2019_5157_MOESM1_ESM.docx (851 kb)
Supplementary material 1 (DOCX 850 kb)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108.  https://doi.org/10.3322/caac.21262 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lai C, Frcpe F, Wu P, Prcpath Chan GC, Mrcp et al (1988) Doxorubicin versus no antitumor therapy in inoperable hepatocellular carcinoma. Cancer 62(3):479–483CrossRefGoogle Scholar
  3. 3.
    Hwang IT, Chung YM, Kim JJ, Chung JS, Kim BS, Kim HJ et al (2007) Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem Biophys Res Commun 359(2):304–310.  https://doi.org/10.1016/j.bbrc.2007.05.088 CrossRefPubMedGoogle Scholar
  4. 4.
    Song J, Shih IM, Salani R, Chan DW, Zhang Z (2007) Annexin XI is associated with cisplatin resistance and related to tumor recurrence in ovarian cancer patients. Clin Cancer Res 13(22):6842–6849.  https://doi.org/10.1158/1078-0432.CCR-07-0569 CrossRefPubMedGoogle Scholar
  5. 5.
    Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK et al (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52(2):528–539.  https://doi.org/10.1002/hep.23692 CrossRefPubMedGoogle Scholar
  6. 6.
    Kottschade L, Novotny P, Lyss A, Mazurczak M, Loprinzi C, Barton D (2016) Chemotherapy-induced nausea and vomiting: incidence and characteristics of persistent symptoms and future directions NCCTG N08C3 (Alliance). Support Care Cancer 24(6):2661–2667.  https://doi.org/10.1007/s00520-016-3080-y CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Manohar S, Leung N (2017) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31(1):15–25.  https://doi.org/10.1007/s40620-017-0392-z CrossRefPubMedGoogle Scholar
  8. 8.
    Qiao G, Xu H, Li C, Li X, Farooqi A, Zhao Y et al (2018) Granulin A synergizes with cisplatin to inhibit the growth of human hepatocellular carcinoma. Int J Mol Sci 19(10):3060–3076.  https://doi.org/10.3390/ijms19103060 CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37(2):429–442.  https://doi.org/10.1053/jhep.2003.50047 CrossRefPubMedGoogle Scholar
  10. 10.
    Ma L, Wen S, Zhan Y, He Y, Liu X, Jiang J (2008) Anticancer effects of the chinese medicine matrine on murine hepatocellular carcinoma cells. Planta Med 74(3):245–251.  https://doi.org/10.1055/s-2008-1034304 CrossRefPubMedGoogle Scholar
  11. 11.
    Yang X, Wang Y, La K, Peng L, Song X, Shi X et al (2012) Inhibitory effects of cocoa tea (Camellia ptilophylla) in human hepatocellular carcinoma HepG2 in vitro and in vivo through apoptosis. J Nutr Biochem 23(9):1051–1057.  https://doi.org/10.1016/j.jnutbio.2011.05.010 CrossRefPubMedGoogle Scholar
  12. 12.
    Yang X, Huang N (2013) Berberine induces selective apoptosis through the AMPK—mediated mitochondrial/caspase pathway in hepatocellular carcinoma. Mol Med Rep 8:505–510.  https://doi.org/10.3892/mmr.2013.1506 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao J, Zhu J, Lv X, Xing J, Liu S, Chen C et al (2017) Curcumin potentiates the potent antitumor activity of ACNU against glioblastoma by suppressing the PI3K/AKT and NF-kappa B/COX-2 signaling pathways. OncoTargets Ther 10:5471–5482.  https://doi.org/10.2147/OTT.S149708 CrossRefGoogle Scholar
  14. 14.
    Zhou L, Yang F, Li G, Huang J, Liu Y, Zhang Q et al (2018) Coptisine induces apoptosis in human hepatoma cells through activating 67-kDa laminin receptor/cGMP signaling. Front Pharmacol 9:517–535.  https://doi.org/10.3389/fphar.2018.00517 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bao W, Pan H, Lu M, Ni Y, Zhang R, Gong X (2007) The apoptotic effect of sarsasapogenin from Anemarrhena asphodeloides on HepG2 human hepatoma cells. Cell Biol Int 31(9):887–892.  https://doi.org/10.1016/j.cellbi.2007.02.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li H (2016) Dietary natural products for prevention and treatment of liver cancer. Nutrients 8(3):156–179.  https://doi.org/10.3390/nu8030156 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mohamed GA, Al-Abd AM, El-halawany AM, Abdallah HM, Sri M (2017) New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer celllines. J Ethnopharmacol.  https://doi.org/10.1016/j.jep.2017.01.030 CrossRefPubMedGoogle Scholar
  18. 18.
    Fang EF, Zhang CZY, Wong JH, Shen JY, Li CH, Ng TB (2012) The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett 324(1):66–74.  https://doi.org/10.1016/j.canlet.2012.05.005 CrossRefPubMedGoogle Scholar
  19. 19.
    Montgomery A, Adeyeni T, San K, Heuertz RM, Ezekiel UR (2016) Curcumin sensitizes silymarin to exert synergistic anticancer activity in colon cancer cells. J Cancer 7(10):1250–1257.  https://doi.org/10.7150/jca.15690 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Manikandan R, Beulaja M, Arulvasu C, Sellamuthu S, Dinesh D, Prabhu D et al (2012) Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines. Microsc Res Tech 75(2):112–116.  https://doi.org/10.1002/jemt.21032 CrossRefPubMedGoogle Scholar
  21. 21.
    Pedan V, Rohn S, Holinger M, Hühn T, Chetschik I (2018) Bioactive compound fingerprint analysis of aged raw Pu’er tea and young ripened Pu’er tea. Molecules 23(8):1931–1949.  https://doi.org/10.3390/molecules23081931 CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yu X, Sun S, Guo Y, Liu Y, Yang D, Li G et al (2018) Citri reticulatae pericarpium (Chenpi): botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional Chinese medicine. J Ethnopharmacol 220:265–282.  https://doi.org/10.1016/j.jep.2018.03.031 CrossRefPubMedGoogle Scholar
  23. 23.
    Duan L, Dou L, Yu K, Guo L, Bai-Zhong C, Li P et al (2017) Polymethoxyflavones in peel of Citrus reticulata ‘Chachi’ and their biological activities. Food Chem.  https://doi.org/10.1016/j.foodchem.2017.05.018 CrossRefPubMedGoogle Scholar
  24. 24.
    Lee K, Yeh M, Kao S, Hung C, Liu C, Huang Y et al (2010) The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappaB in human hepatocellular carcinoma cells. Toxicol Lett 194(2):42–49.  https://doi.org/10.1016/j.toxlet.2010.01.021 CrossRefPubMedGoogle Scholar
  25. 25.
    Hartley LC, Flowers N, Holmes J, Clarke A, Stranges S, Hooper L et al (2013) PP10 green and black tea for the primary prevention of cardiovascular disease (CVD): a cochrane systematic review. Wiley, London, pp 1–65.  https://doi.org/10.1136/jech-2013-203126.109 CrossRefGoogle Scholar
  26. 26.
    Pan H, Gao Y, Tu Y (2016) Mechanisms of body weight reduction by black tea polyphenols. Molecules 21(12):1659–1669.  https://doi.org/10.3390/molecules21121659 CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Singh BN, Prateeksha Rawat AKS, Bhagat RM, Singh BR (2017) Black tea: phytochemicals, cancer chemoprevention, and clinical studies. Food Sci Nutr 57(7):1394–1410.  https://doi.org/10.1080/10408398.2014.994700 CrossRefGoogle Scholar
  28. 28.
    Naveed M, BiBi J, Kamboh AA, Suheryani I, Kakar I, Fazlani SA et al (2018) Pharmacological values and therapeutic properties of black tea (Camellia sinensis): a comprehensive overview. Biomed Pharmacother 100:521–531.  https://doi.org/10.1016/j.biopha.2018.02.048 CrossRefPubMedGoogle Scholar
  29. 29.
    Chen Z, Lin Z (2015) Tea and human health: biomedical functions of tea active components and current issues. Biomed Biotechnol 2(16):87–102.  https://doi.org/10.1631/jzus.B1500001 CrossRefGoogle Scholar
  30. 30.
    Peluso I, Serafini M (2017) Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms. Br J Pharmacol 174(11):1195–1208.  https://doi.org/10.1111/bph.13649 CrossRefPubMedGoogle Scholar
  31. 31.
    Oak M, El Bedoui J, Schini-Kerth VB (2005) Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem 16(1):1–8.  https://doi.org/10.1016/j.jnutbio.2004.09.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Rodriguez SK, Guo W, Liu L, Band MA, Paulson EK, Meydani M (2006) Green tea catechin, epigallocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int J Cancer 118(7):1635–1644.  https://doi.org/10.1002/ijc.21545 CrossRefPubMedGoogle Scholar
  33. 33.
    Fassina G, Venè R, Morini M (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865–4873CrossRefGoogle Scholar
  34. 34.
    Lee WJ (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030.  https://doi.org/10.1124/mol.104.008367 CrossRefPubMedGoogle Scholar
  35. 35.
    Yang CS, Lambert JD, Hou Z, Ju J, Lu G, Hao X (2006) Molecular targets for the cancer preventive activity of tea polyphenols. Mol Carcinog 45(6):431–435.  https://doi.org/10.1002/mc.20228 CrossRefPubMedGoogle Scholar
  36. 36.
    Dias PM, Changarath J, Damodaran A, Joshi MK (2014) Compositional variation among black tea across geographies and their potential influence on endothelial nitric oxide and antioxidant activity. J Agric Food Chem 62(28):6655–6668.  https://doi.org/10.1021/jf501611w CrossRefPubMedGoogle Scholar
  37. 37.
    Yao L, Liu X, Jiang Y, Caffin N, D’Arcy B, Singanusong R et al (2006) Compositional analysis of teas from Australian supermarkets. Food Chem 94(1):115–122.  https://doi.org/10.1016/j.foodchem.2004.11.009 CrossRefGoogle Scholar
  38. 38.
    Akuli A, Pal A, Joshi R, Gulati A, Dey T, Bhattacharyya N (2012) A new method for rapid detection of total colour (TC), theaflavins (TF), thearubigins (TR) and brightness (TB) in orthodox teas. International Conference on Sensing Technology (ICST); 2012 2012-01-01: IEEE; 2012. pp 23–28Google Scholar
  39. 39.
    Batsalova T, Basheva D, Bardarov K, Bardarov V, Dzhambazov B, Teneva I (2018) Assessment of the cytotoxicity, antioxidant activity and chemical composition of extracts from the cyanobacterium Fischerella major Gomont. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2018.11.097 CrossRefPubMedGoogle Scholar
  40. 40.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9):1231–1237CrossRefGoogle Scholar
  41. 41.
    Wang X, Lan Y, Zhu Y, Li S, Liu M, Song X et al (2018) Hepatoprotective effects of Auricularia cornea var. Li. polysaccharides against the alcoholic liver diseases through different metabolic pathways. Sci Rep 8(1):1–12.  https://doi.org/10.1038/s41598-018-25830-w CrossRefGoogle Scholar
  42. 42.
    Tong J, Wang Z (2017) Analysis of epidermal growth factor receptor-induced cell motility by wound healing assay. Methods Mol Biol (Clifton, NJ) 1652:159–163.  https://doi.org/10.1007/978-1-4939-7219-7_12 CrossRefGoogle Scholar
  43. 43.
    Dhanasekaran R, Bandoh S, Roberts LR (2016) Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research 5:876–894.  https://doi.org/10.12688/f1000research.6946.1 CrossRefGoogle Scholar
  44. 44.
    Friedman M, Mackey BE, Kim H, Lee I, Lee K, Lee S et al (2007) Structure-activity relationships of tea compounds against human cancer cells. J Agric Food Chem 55(2):243–253.  https://doi.org/10.1021/jf062276h CrossRefPubMedGoogle Scholar
  45. 45.
    Kuo P, Lin C (2003) Green tea constituent (−)-epigallocatechin-3-gallate inhibits HepG2 cell proliferation and induces apoptosis through p53-dependent and fas-mediated pathways. J Biomed Sci 10(2):219–227.  https://doi.org/10.1159/000068711 CrossRefPubMedGoogle Scholar
  46. 46.
    Shirakami Y, Shimizu M, Adachi S, Sakai H, Nakagawa T, Yasuda Y et al (2009) (−)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Sci 100(10):1957–1962.  https://doi.org/10.1111/j.1349-7006.2009.01241.x CrossRefPubMedGoogle Scholar
  47. 47.
    Yumnam S, Hong GE, Raha S, Saralamma VVG, Lee HJ, Lee W et al (2016) Mitochondrial dysfunction and Ca2+ overload contributes to hesperidin induced paraptosis in hepatoblastoma cells, HepG2. J Cell Physiol 231(6):1261–1268.  https://doi.org/10.1002/jcp.25222 CrossRefPubMedGoogle Scholar
  48. 48.
    Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 4(2):152–159CrossRefGoogle Scholar
  49. 49.
    Lee S, Im K, Suh S, Jung J (2003) Protective effect of green tea polyphenol (-)-epigallocatechin gallate and other antioxidants on lipid peroxidation in gerbil brain homogenates. Phytother Res 17(3):206–209.  https://doi.org/10.1002/ptr.1090 CrossRefPubMedGoogle Scholar
  50. 50.
    Ma L, Wang J, Lin J, Pan Q, Yu Y, Sun F (2014) Cluster of differentiation 166 (CD166) regulated by phosphatidylinositide 3-kinase (PI3K)/AKT signaling to exert its anti-apoptotic role via yes-associated protein (YAP) in liver cancer. J Biol Chem 289(10):6921–6933.  https://doi.org/10.1074/jbc.M113.524819 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhu M, Li W, Lu Y, Dong X, Lin B, Chen Y et al (2017) HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway. Int J Cancer 140(6):1346–1355.  https://doi.org/10.1002/ijc.30553 CrossRefPubMedGoogle Scholar
  52. 52.
    Feng Y, Zu L, Zhang L (2018) MicroRNA-26b inhibits the tumor growth of human liver cancer through the PI3K/Akt and NF-κB/MMP-9/VEGF pathways. Oncol Rep 39(5):2288–2296.  https://doi.org/10.3892/or.2018.6289 CrossRefPubMedGoogle Scholar
  53. 53.
    Li Y, Zheng-ming Xiao-tong S, Ping Y, Wang FX (2016) The effects of urotensin ii on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-jun n-terminal kinase pathway in human hepatoma cells. Peptides.  https://doi.org/10.1016/j.peptides.2016.12.005 CrossRefPubMedGoogle Scholar
  54. 54.
    Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17(6):868–888.  https://doi.org/10.3390/ijms17060868 CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Li H, Wang H, Ren Z (2018) MicroRNA-214-5p inhibits the invasion and migration of hepatocellular carcinoma cells by targeting Wiskott-Aldrich syndrome like. Cell Physiol Biochem 46(2):757–764.  https://doi.org/10.1159/000488734 CrossRefPubMedGoogle Scholar
  56. 56.
    Zheng Q, Chen X, Bao Q, Yu J, Chen L (2018) ILK enhances migration and invasion abilities of human endometrial stromal cells by facilitating the epithelial-mesenchymal transition. Gynecol Endocrinol.  https://doi.org/10.1080/09513590.2018.1498477 CrossRefPubMedGoogle Scholar
  57. 57.
    Shi Y, Wu Q, Xuan W, Feng X, Wang F, Tsao BP et al (2018) Transcription factor SOX5 promotes the migration and invasion of fibroblast-like synoviocytes in part by regulating MMP-9 expression in collagen-induced arthritis. Front Immunol 9:749–760.  https://doi.org/10.3389/fimmu.2018.00749 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Biotechnology and Health SciencesWuyi UniversityJiangmenPeople’s Republic of China
  2. 2.Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouPeople’s Republic of China
  3. 3.International Healthcare Innovation Institute (Jiangmen)JiangmenPeople’s Republic of China

Personalised recommendations