Advertisement

Identification of ribosomal sites and karyotype analysis in Festuca ulochaeta Steud. and Festuca fimbriata Ness., grasses native to Brazil

  • Marco Túlio Mendes Ferreira
  • Ana Luisa Arantes Chaves
  • Laiane Corsini Rocha
  • Leonardo Nogueira da Silva
  • Eliane Kalthuk-Santos
  • Vania Helena TechioEmail author
Original Article

Abstract

Festuca L. has more than 600 perennial species described, which makes it the largest genus within the family Poaceae. In Brazil, only two native species of Festuca have been described, for which cytogenetic studies need to be strengthened: Festuca ulochaeta and Festuca fimbriata. The aim of this study was to characterize the karyotypes of F. ulochaeta and F. fimbriata based on the mapping of rDNA sites. The FISH was performed with 35S and 5S rDNA probes. Both species have 42 chromosomes, of which 36 were metacentric and six were submetacentric. Festuca fimbriata has two pairs of 35S rDNA sites, one located on the metacentric pair 4, in an interstitial position, and one at the submetacentric pair 14 in the proximal position. Festuca ulochaeta has one pair of 35S rDNA in interstitial-proximal position in the metacentric pair 3. Both species showed 5S rDNA sites only on chromosome pair 21 in the terminal position of the short arm. The analysis of the chromosomal characteristics indicates that these species have a symmetrical karyotype and allopolyploid origin.

Keywords

Poaceae Polyploidy FISH Ribosomal DNA 

Notes

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq), the Foundation for Research Support of the State of Minas Gerais (FAPEMIG) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillepsie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J Syst Evol 55:259–290.  https://doi.org/10.1111/jse.12262 CrossRefGoogle Scholar
  2. 2.
    Hodkinson TR (2018) Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annu Plant Rev.  https://doi.org/10.1002/9781119312994.apr0622 CrossRefGoogle Scholar
  3. 3.
    Watson L, Dallwitz MJ (1992) The grass genera of the world. C.A.B. International, WallingfordGoogle Scholar
  4. 4.
    Darbyshire SJ, Soreng RJ, Stančík D, Koch SD (2003) Festuca. In: Soreng RJ, Peterson PM, Davidse G, Judziewicz EJ, Zuloaga FO, Filgueiras TS, Morrone O (eds) Catalogue of new world grasses (Poaceae): IV. Subfamily Pooideae. Contributions from the United States National Herbarium, Washington, DC, pp 312–369Google Scholar
  5. 5.
    Fernández Pepi MG, Zucol AF, Arriaga MO (2012) Comparative phytolith analysis of Festuca (Pooideae: Poaceae) species native to Tierra del Fuego, Argentina. Botany 90:1113–1124.  https://doi.org/10.1139/b2012-070 CrossRefGoogle Scholar
  6. 6.
    Šmarda P, Stančík D (2006) Ploidy level variability in South American Fescues (Festuca L., Poaceae): use of flow cytometry in up to 5 ½-year-old caryopses and herbarium specimens. Plant Biol 8:73–80CrossRefGoogle Scholar
  7. 7.
    Kopecký D, Lukaszewski AJ, Doležel J (2008) Cytogenetics of festulolium (Festuca × LoliumhybridsCytogenet. Genome Res 120:370–383CrossRefGoogle Scholar
  8. 8.
    Jauhar PP (2012) Cytogenetics of the Festuca-Lolium complex: relevance to breeding. Springer, New YorkGoogle Scholar
  9. 9.
    Kopecký D, Havránková M, Loureiro J, Castro S, Lukaszewski AJ, Bartoš J, Kopecká J, Doležel J (2010) Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum. Cytogenet Genome Res 129:162–172.  https://doi.org/10.1159/000313379 CrossRefPubMedGoogle Scholar
  10. 10.
    Bulinska-Radomska Z, Lester RN (1988) Intergeneric relationships of Lolium, Festuca, and Vulpia (Poaceae) and their phylogeny. Plant Syst Evol 59:217–227CrossRefGoogle Scholar
  11. 11.
    Książczyk T, Zwierzykowska E, Molik K, Taciak M, Krajewski P, Zwierzykowski Z (2014) Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. Protoplasma 252:1–12.  https://doi.org/10.1007/s00709-014-0734-9 CrossRefGoogle Scholar
  12. 12.
    Inda LA, Segarra-Moragues JG, Müller J, Peterson PM, Catalán P (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol Phylogenet Evol 46:932–957CrossRefGoogle Scholar
  13. 13.
    Dinelli G, Bonetti A, Marotti I, Minelli M, Catizone P (2004) Characterization of Italian populations of Lolium spp. resistant and susceptible to diclofop-methyl by Inter Simple Sequence Repeat (ISSR). Weed Sci 52:330–340.  https://doi.org/10.1614/WS-03-125R CrossRefGoogle Scholar
  14. 14.
    Dubcovsky J, Martinez A (1992) Distribucion geografica de los niveles de ploidia en Festuca. Parodiana 7:91–99Google Scholar
  15. 15.
    Stančík D, Peterson PM (2007) A revision of Festuca (Poaceae: Loliinae) in South American Paramos. Contributions from the United States National Herbarium 56: 1–184Google Scholar
  16. 16.
    Dubcovsky J, Martinez AJ (1987) Cariotipos y comportamiento meiótico de los cromosomas de Festuca pallescens (Poaceae). Darwiniana 28:153–161Google Scholar
  17. 17.
    Tovar O (1993) Las gramineas (Poaceae) del Perú. Ruizia 13:1–480Google Scholar
  18. 18.
    Zuloaga FO, Nicora EG, Rúgolo de Agrasar ZE, Morrone O, Pensiero J, Cialdella AM (1994) Catálogo de la familia Poaceae en la República Argentina. Monogr Syst Bot Mo Bot Gard 47:1–178Google Scholar
  19. 19.
    Renvoize SA (1998) Gramineas de Bolivia. Kew: Royal Botanic Garden. Nord J Bot 18(3):368.  https://doi.org/10.1111/j.1756-1051.1998.tb01891.x CrossRefGoogle Scholar
  20. 20.
    Soreng RJ, Peterson PM, Davidse G, Judziewicz EJ, Zuloaga FO, Filgueiras TS, Morrone O (2003) Catalogue of new world grasses (Poaceae) IV. Subfamily Pooideae. Contr. U.S. Natl. Herb. 48:1–730Google Scholar
  21. 21.
    Dubcovsky J, Martinez AJ (1988) Cariotipos y comportamiento meiótico de las especies de Festuca (Poaceae) endémicas de Sierra de la Ventana. Bol Soc Argent Bot 25:415–423Google Scholar
  22. 22.
    Dubcovsky J (1989) Estudios citogenéticos y evolutivos de las especies patagônicas del gênero Festuca (Poaceae). Doctorate thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresGoogle Scholar
  23. 23.
    Dubcovsky J, Martinez AJ (1991) Cytotaxonomy of the Festuca spp. from Patagonia. Can J Bot 70:1134–1140CrossRefGoogle Scholar
  24. 24.
    Schifino MT, Winge H (1982) Report of chromosome number for Festuca ulochaeta. In IOPB Chromosome Number Reports, 77 (Love, A., ed.), Taxon 31,766Google Scholar
  25. 25.
    Longhi-Wagner HM (1987) Festuca L. Flora Ilustrada do Rio Grande do Sul, Fascículo 17. Gramineae, tribo Poeae. Bol Inst Biociências 41:18–68Google Scholar
  26. 26.
    Essi L, da Silva LN (2018) Festuca in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB13240. Accessed 12 Nov 2018
  27. 27.
    Younis A, Ramzan F, Hwang YJ, Lim KB (2015) FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep 34:1477–1488.  https://doi.org/10.1007/s00299-015-1828-3 CrossRefPubMedGoogle Scholar
  28. 28.
    Kobayashi T (2008) A new role of the rDNA and nucleolus in the nucleus - DNA instability maintains genome integrity. BioEssays 30:267–272.  https://doi.org/10.1002/bies.20723 CrossRefPubMedGoogle Scholar
  29. 29.
    Kobayashi T (2011) Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 68:1395–1403.  https://doi.org/10.1007/s00018-010-0613-2 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jiang JB, Gill S, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl AcadSci USA 92:4487–4491.  https://doi.org/10.1073/pnas.92.10.4487 CrossRefGoogle Scholar
  31. 31.
    Gernand D, Golczyk H, Rutten T, Ilnicki T, Houben A, Joachimiak AJ (2007) Tissue culture triggers chromosome alterations, amplification, and transposition of repeat sequences in Allium fistulosum. Genome 50:435–442.  https://doi.org/10.1139/G07-023 CrossRefPubMedGoogle Scholar
  32. 32.
    Carvalho CR, Saraiva LS (1993) A new heterochromatin banding pattern revealed by modified HKG banding technique for maize chromosomes. Heredity 70:515–519CrossRefGoogle Scholar
  33. 33.
    Yu Y, Altinordu F, Peruzzi L, He XJ (2015) KaryoType 2.0. http://mnh.scu.edu.cn/soft/blog/KaryoType. Accessed 30 Oct 2018
  34. 34.
    Altinordu F, Peruzzi L, Yu Y, He X (2016) A tool for the analysis of chromosomes: KaryoType. Taxon 65(3):586–592.  https://doi.org/10.12705/653 CrossRefGoogle Scholar
  35. 35.
    Levan AK, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  36. 36.
    Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225.  https://doi.org/10.1186/1471-2148-12-225 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stebbins GL (1958) Longevity, habitat, and release of genetic variability in the higher plants. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 365–378Google Scholar
  38. 38.
    Pohl RW, Davidse G (1971) Chromosome numbers of Costa Rican grasses. Brittonia 23:293–324CrossRefGoogle Scholar
  39. 39.
    Dubcovsky J, Agrasar ZE (1990) Festuca roigii (Poaceae), nueva especie, diferencias morfologicas y citologicas con F. simpliciuscula. Bol Soc Argent Bot 2:235–242Google Scholar
  40. 40.
    Dubcovsky J, Martinez AJ (1991) Chromosome complement and nucleoli in the Festuca pallescens alliance from South America. Can J Bot 69:2756–2761CrossRefGoogle Scholar
  41. 41.
    Stančík D (2003) Las especies del género Festuca (Poaceae) en Colombia. Darwiniana 41:93–153Google Scholar
  42. 42.
    Křivánková A, Kopecký D, Stočes Š, Doležel J, Hřibová E (2017) Repetitive DNA: a Versatile Tool for Karyotyping in Festuca pratensis Huds. Cytogenet Genome Res 151:96–105.  https://doi.org/10.1159/000462915 CrossRefPubMedGoogle Scholar
  43. 43.
    Malik CP, Thomas PT (1966) Karyotipic studies in some Lolium and Festuca species. Caryologia 19:167–196CrossRefGoogle Scholar
  44. 44.
    Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410.  https://doi.org/10.1139/g97-054 CrossRefPubMedGoogle Scholar
  45. 45.
    Lima-de-Faria A (1973) Equations defining the position of ribosomal cistrons in the eukaryotic chromosome. Nat New Biol 241:136–139CrossRefGoogle Scholar
  46. 46.
    Roa F, Guerra M (2015) Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249.  https://doi.org/10.1159/000440930 CrossRefPubMedGoogle Scholar
  47. 47.
    Thomas HM, Harper JA, Meredith MR, Morgan WG, Thomas ID, Timms E, King IP (1996) Comparison of ribosomal DNA sites in Loliumspecies by fluorescence in situ hybridization. Chromosome Res 4:486–490CrossRefGoogle Scholar
  48. 48.
    Bustamante FO, Techio VH, Rocha LC, Torres GA, Davide LC, Mittelmann A (2014) Distribution of rDNA in diploid and poliploid Lolium multiflorum Lam. reveals fragile sites in 45S rDNA region. Crop Sci 54:617–625.  https://doi.org/10.2135/cropsci2013.05.0325 CrossRefGoogle Scholar
  49. 49.
    Rocha LC, Bustamante FO, Duarte RAS, Torres GA, Mittelmann A, Techio VH (2015) Functional repetitive sequences and fragile sites in chromosomes of Loliumperenne L. Protoplasma 252:451–460.  https://doi.org/10.1007/s00709-014-0690-4 CrossRefPubMedGoogle Scholar
  50. 50.
    Naranjo CA (1982) Estudios citogenéticos y evolutivos en algunas especies sudamericanas de Bromus (Gramineae). En Actas V Congr. Latinoam. Genética. Ed. por Cruz Coke, R., Brncic, D. Santiago Chile, 340–341Google Scholar
  51. 51.
    Hunziker JH (1978) Cytogenetics and evolution of some species of the genus Poa (Gramineae). Actas III Congreso Latinoamericano de Genética. Asociación Latinoamericana de Genética, Montevideo, pp 144–149Google Scholar
  52. 52.
    Sampaio MTS, Hickenbick MCM, Winge H (1979) Chromosome numbers and meiotic behaviour of South American species of the Briza complex(Gramineae). Rev Bras Genet 2:125–134Google Scholar
  53. 53.
    Hunziker JH, Stebbins GL (1988) Chromosomal evolution in the Gramineae. In: Salmon L (ed) International symposium on grass systematics and evolution. Smithsonian Institution Press, Washington, DC (USA), pp 27–31Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiologyFederal University of Lavras - UFLALavrasBrazil
  2. 2.Department of BiologyFederal University of Rio Grande do Sul - UFRGSPorto AlegreBrazil

Personalised recommendations